Interleaved Periodic Event-Triggered Communications-Based Distributed Formation Control for Cooperative Unmanned Surface Vessels

计算机科学 事件(粒子物理) 趋同(经济学) 控制理论(社会学) 干扰 协议(科学) 无线 方案(数学) 分布式计算 控制(管理) 人工智能 数学 电信 医学 数学分析 物理 替代医学 病理 量子力学 经济 热力学 经济增长
作者
Bin Zhou,Bing Huang,Yumin Su,Cheng Zhu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2382-2394 被引量:38
标识
DOI:10.1109/tnnls.2024.3351218
摘要

This article addresses the distributed formation control issue of cooperative unmanned surface vessels (USVs) under interleaved periodic event-triggered communications. First, an adaptive event-based control protocol is designed, where the event-based neural network (NN) scheme is developed to compensate for uncertain model dynamics. Upon the designed control protocol, an interleaved periodic event-triggered mechanism (IPETM) is subsequently proposed to achieve the communication objective. Unlike the common continuous event-triggered methods and periodic event-triggered methods, in which multiple nodes are allowed to trigger their events at the same time, the proposed IPETM ensures that USVs detect their events at different times to avoid the simultaneous event triggering of different nodes. By this virtue, traffic jamming in common wireless environments can be prevented, such that potential communication delays and faults are naturally avoided. In addition, the event detecting instants of the presented IPETM are also discrete and periodic, such that it can be performed under low-computational frequencies. Through Lyapunov-based analysis, it is verified that all closed-loop signals can converge to an arbitrary small compact set with exponential convergence rates. Simulation results demonstrate the effectiveness and superiority of the proposed control scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助呵呵采纳,获得50
刚刚
123完成签到,获得积分10
1秒前
lily发布了新的文献求助30
2秒前
哦哦完成签到 ,获得积分10
3秒前
星辰大海应助liv采纳,获得10
3秒前
HOME完成签到,获得积分20
5秒前
5秒前
5秒前
韩韩完成签到 ,获得积分10
6秒前
秉文完成签到,获得积分10
8秒前
9秒前
HOME发布了新的文献求助10
10秒前
dian完成签到 ,获得积分10
11秒前
小鹿完成签到,获得积分10
12秒前
千堆雪完成签到,获得积分10
12秒前
12秒前
张不大完成签到,获得积分10
13秒前
华仔应助阳光的电脑采纳,获得10
14秒前
赘婿应助小全采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得50
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
Auston_zhong应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
liv发布了新的文献求助10
17秒前
20秒前
科研通AI5应助shepherd采纳,获得10
21秒前
雾野发布了新的文献求助10
22秒前
Owen应助畅快夏天采纳,获得10
23秒前
细心的不乐完成签到,获得积分10
24秒前
24秒前
RRRabbit完成签到,获得积分10
25秒前
25秒前
刘善行发布了新的文献求助150
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737385
求助须知:如何正确求助?哪些是违规求助? 3281209
关于积分的说明 10023728
捐赠科研通 2997939
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782304
科研通“疑难数据库(出版商)”最低求助积分说明 749762