亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Thermal Comfort Model Established by Using Machine Learning Strategies Based on Physiological Parameters in Hot and Cold Environments

热舒适性 模拟 计算机科学 人工神经网络 风洞 风速 皮肤温度 人工智能 环境科学 工程类 气象学 航空航天工程 生物医学工程 物理
作者
Tseng-Fung Ho,H. L. Tsai,Chi-Chih Chuang,Dasheng Lee,Xiwei Huang,Hsiang Chen,Chin–Chi Cheng,Yaw‐Wen Kuo,Hsin‐Hung Chou,Wei‐Han Hsiao,Ching Hsu Yang,Yung‐Hui Li
出处
期刊:Indoor Air [Wiley]
卷期号:2024: 1-16 被引量:1
标识
DOI:10.1155/2024/9427822
摘要

The air-conditioning systems have become an indispensable part of our daily life for keeping the quality of life. However, to improve the thermal comfort and reduce energy consumption is crucial to use the air conditioners effectively with rapid development of artificial intelligence technology. This study explored the correlation between the response of human physiological parameters and thermal sensation voting (TSV) to evaluate the comfort level among various cold and hot stimulations. The variations of the three physiological parameters, which were body surface temperature, skin blood flow (SBF), and sweat area on the skin surface, and TSV values were all positively correlated with the stimulation amount under the stimulation of cold wind, hot wind, and heat radiation, but the relationship was not completely linear. Among the three physiological parameters, the forehead skin temperature has the closest relationship with TSV, followed by the SBF and sweat. Among three stimulations, the cold wind stimulation causes the closest relationship between TSV and forehead temperature, followed by the radiation and hot wind stimulations. Through three different machine learning models, namely, random forest (RF) model, support vector machine (SVM) model, and neural network (NN) model, the stimulation of cold wind, hot wind, and heat radiation was applied to investigate the variation of the three physiological parameters as the input of the models. Moreover, the models were evaluated and verified by TSV. The results revealed that among the three different machine learning methods, RF had the best accuracy. The established thermal comfort models can predict the real-time user’s thermal comfort feeling, so that air-conditioning equipment’s performance can be optimized to create a healthy and energy-saving comfortable environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
白桦林泪发布了新的文献求助20
23秒前
43秒前
Winner完成签到,获得积分10
51秒前
51秒前
mixieer完成签到,获得积分10
54秒前
mixieer发布了新的文献求助10
56秒前
小狮子完成签到,获得积分10
57秒前
1分钟前
林鹏达发布了新的文献求助10
1分钟前
向近完成签到 ,获得积分10
1分钟前
铜锣湾新之助完成签到 ,获得积分10
1分钟前
浦肯野应助janice采纳,获得10
1分钟前
小狮子发布了新的文献求助10
1分钟前
1分钟前
阿泽发布了新的文献求助10
1分钟前
bkagyin应助白桦林泪采纳,获得10
1分钟前
善学以致用应助小狮子采纳,获得10
2分钟前
2分钟前
2分钟前
twk发布了新的文献求助10
2分钟前
twk完成签到,获得积分10
2分钟前
lc发布了新的文献求助10
3分钟前
阿泽完成签到,获得积分10
3分钟前
余小渔应助janice采纳,获得10
3分钟前
3分钟前
3分钟前
小狮子发布了新的文献求助10
3分钟前
优秀的dd完成签到 ,获得积分10
3分钟前
lc完成签到 ,获得积分10
3分钟前
3分钟前
xiayu完成签到 ,获得积分10
3分钟前
4分钟前
打打应助qwdqw采纳,获得10
4分钟前
4分钟前
4分钟前
qwdqw发布了新的文献求助10
4分钟前
qwdqw完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550224
求助须知:如何正确求助?哪些是违规求助? 3126627
关于积分的说明 9369468
捐赠科研通 2825662
什么是DOI,文献DOI怎么找? 1553371
邀请新用户注册赠送积分活动 724846
科研通“疑难数据库(出版商)”最低求助积分说明 714438