PEA-m6A: an ensemble learning framework for accurately predicting N6-methyladenosine modifications in plants

一般化 计算生物学 灵活性(工程) N6-甲基腺苷 生物 人工智能 计算机科学 机器学习 数学 基因 生物化学 甲基转移酶 甲基化 数学分析 统计
作者
Minggui Song,Jiawen Zhao,Chujun Zhang,C. Jia,Jing Yang,Haonan Zhao,Jingjing Zhai,Beilei Lei,Shiheng Tao,Siqi Chen,Ran Su,Chuang Ma
出处
期刊:Plant Physiology [Oxford University Press]
卷期号:195 (2): 1200-1213 被引量:1
标识
DOI:10.1093/plphys/kiae120
摘要

Abstract N 6-methyladenosine (m6A), which is the mostly prevalent modification in eukaryotic mRNAs, is involved in gene expression regulation and many RNA metabolism processes. Accurate prediction of m6A modification is important for understanding its molecular mechanisms in different biological contexts. However, most existing models have limited range of application and are species-centric. Here we present PEA-m6A, a unified, modularized and parameterized framework that can streamline m6A-Seq data analysis for predicting m6A-modified regions in plant genomes. The PEA-m6A framework builds ensemble learning-based m6A prediction models with statistic-based and deep learning-driven features, achieving superior performance with an improvement of 6.7% to 23.3% in the area under precision-recall curve compared with state-of-the-art regional-scale m6A predictor WeakRM in 12 plant species. Especially, PEA-m6A is capable of leveraging knowledge from pretrained models via transfer learning, representing an innovation in that it can improve prediction accuracy of m6A modifications under small-sample training tasks. PEA-m6A also has a strong capability for generalization, making it suitable for application in within- and cross-species m6A prediction. Overall, this study presents a promising m6A prediction tool, PEA-m6A, with outstanding performance in terms of its accuracy, flexibility, transferability, and generalization ability. PEA-m6A has been packaged using Galaxy and Docker technologies for ease of use and is publicly available at https://github.com/cma2015/PEA-m6A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qin希望应助科研通管家采纳,获得10
1秒前
小二郎应助YMAO采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
IceyCNZ应助科研通管家采纳,获得10
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
jianglin6完成签到,获得积分20
1秒前
苏卿应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
科研进化中完成签到,获得积分10
2秒前
IceyCNZ应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
杆杆完成签到,获得积分10
2秒前
2秒前
2秒前
闪闪芷波完成签到,获得积分10
2秒前
嗷嗷发布了新的文献求助10
3秒前
3秒前
snow完成签到,获得积分10
4秒前
田様应助半富半莲采纳,获得10
4秒前
5秒前
5秒前
苏卿应助bear采纳,获得10
5秒前
Lucas应助ZYao65采纳,获得10
6秒前
6秒前
科研通AI5应助杆杆采纳,获得10
6秒前
youyoumami完成签到,获得积分20
6秒前
7秒前
linyalala发布了新的文献求助10
7秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564154
求助须知:如何正确求助?哪些是违规求助? 3137367
关于积分的说明 9422052
捐赠科研通 2837751
什么是DOI,文献DOI怎么找? 1560082
邀请新用户注册赠送积分活动 729261
科研通“疑难数据库(出版商)”最低求助积分说明 717280