酶
水解物
双功能
抗氧化剂
化学
四糖
生物化学
生物高聚物
多糖
有机化学
水解
催化作用
聚合物
作者
Xiaoqian Gu,Liping Fu,Z. Y. Wang,Zhe Cao,Luying Zhao,Dewi Seswita Zilda,Ao Zhang,Qian Zhang,Li Jiang
标识
DOI:10.1021/acs.jafc.3c08638
摘要
Alginate lyase Aly448, a potential new member of the polysaccharide lyase (PL) 7 family, which was cloned and identified from the macroalgae-associated bacterial metagenomic library, showed bifunctionality. The molecular docking results revealed that Aly448 has two completely different binding sites for alginate (polyMG), poly-α-l-guluronic acid (polyG), and poly-β-d-mannuronic acid (polyM) substrates, respectively, which might be the molecular basis for the enzyme's bifunctionality. Truncational results confirmed that predicted key residues affected the bifunctionality of Aly448, but did not wholly explain. Besides, Aly448 presented excellent biochemical characteristics, such as higher thermal stability and pH tolerance. Degradation of polyMG, polyM, and polyG substrates by Aly448 produced tetrasaccharide (DP4), disaccharide (DP2), and galactose (DP1), which exhibited excellent antioxidant activity. These findings provide novel insights into the substrate recognition mechanism of bifunctional alginate lyases and pave a new path for the exploitation of natural antioxidant agents.
科研通智能强力驱动
Strongly Powered by AbleSci AI