Brain Image Segmentation for Ultrascale Neuron Reconstruction via an Adaptive Dual-Task Learning Network

人工智能 计算机科学 分割 模式识别(心理学) 计算机视觉 图像分割 特征向量 特征(语言学) 特征提取 语言学 哲学
作者
Min Liu,Shuhan Wu,Runze Chen,Zhuangdian Lin,Yaonan Wang,Erik Meijering
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2574-2586 被引量:5
标识
DOI:10.1109/tmi.2024.3367384
摘要

Accurate morphological reconstruction of neurons in whole brain images is critical for brain science research. However, due to the wide range of whole brain imaging, uneven staining, and optical system fluctuations, there are significant differences in image properties between different regions of the ultrascale brain image, such as dramatically varying voxel intensities and inhomogeneous distribution of background noise, posing an enormous challenge to neuron reconstruction from whole brain images. In this paper, we propose an adaptive dual-task learning network (ADTL-Net) to quickly and accurately extract neuronal structures from ultrascale brain images. Specifically, this framework includes an External Features Classifier (EFC) and a Parameter Adaptive Segmentation Decoder (PASD), which share the same Multi-Scale Feature Encoder (MSFE). MSFE introduces an attention module named Channel Space Fusion Module (CSFM) to extract structure and intensity distribution features of neurons at different scales for addressing the problem of anisotropy in 3D space. Then, EFC is designed to classify these feature maps based on external features, such as foreground intensity distributions and image smoothness, and select specific PASD parameters to decode them of different classes to obtain accurate segmentation results. PASD contains multiple sets of parameters trained by different representative complex signal-to-noise distribution image blocks to handle various images more robustly. Experimental results prove that compared with other advanced segmentation methods for neuron reconstruction, the proposed method achieves state-of-the-art results in the task of neuron reconstruction from ultrascale brain images, with an improvement of about 49% in speed and 12% in F1 score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助罗沫沫采纳,获得10
1秒前
迅速凡霜发布了新的文献求助10
3秒前
小林太郎应助Lwxbb采纳,获得30
3秒前
潘婷婷呀发布了新的文献求助10
4秒前
haha给haha的求助进行了留言
4秒前
我是老大应助wuxunxun2015采纳,获得10
4秒前
5秒前
5秒前
5秒前
不将就完成签到 ,获得积分10
6秒前
7秒前
8秒前
大胆中恶发布了新的文献求助20
8秒前
不安青牛应助冷酷豌豆采纳,获得10
8秒前
9秒前
wjl发布了新的文献求助10
10秒前
看火人完成签到 ,获得积分10
10秒前
10秒前
lxh发布了新的文献求助10
10秒前
果果瑞宁发布了新的文献求助10
11秒前
11秒前
学术垃圾发布了新的文献求助10
11秒前
JOFM发布了新的文献求助10
11秒前
Accepted完成签到,获得积分10
12秒前
12秒前
领导范儿应助xcxc采纳,获得10
12秒前
112233完成签到 ,获得积分10
13秒前
传奇3应助Pandaer采纳,获得10
13秒前
JUSTDOIT发布了新的文献求助10
15秒前
zhanks发布了新的文献求助10
16秒前
隐形曼青应助gdj采纳,获得10
16秒前
禹代秋完成签到,获得积分10
16秒前
18秒前
18秒前
18秒前
闾丘博超发布了新的文献求助10
18秒前
烂漫的汲完成签到,获得积分10
19秒前
云澈完成签到,获得积分10
20秒前
20秒前
zhanghw完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514977
求助须知:如何正确求助?哪些是违规求助? 3097303
关于积分的说明 9235135
捐赠科研通 2792262
什么是DOI,文献DOI怎么找? 1532392
邀请新用户注册赠送积分活动 712025
科研通“疑难数据库(出版商)”最低求助积分说明 707090