Prompt engineering in consistency and reliability with the evidence-based guideline for LLMs

一致性(知识库) 可靠性(半导体) 指南 心理学 医学 计算机科学 病理 人工智能 功率(物理) 物理 量子力学
作者
Wang Li,Xi Chen,Xiangwen Deng,Hao Wen,Mingke You,Weizhi Liu,Qi Li,Jian Li
出处
期刊:npj digital medicine [Springer Nature]
卷期号:7 (1) 被引量:52
标识
DOI:10.1038/s41746-024-01029-4
摘要

Abstract The use of large language models (LLMs) in clinical medicine is currently thriving. Effectively transferring LLMs’ pertinent theoretical knowledge from computer science to their application in clinical medicine is crucial. Prompt engineering has shown potential as an effective method in this regard. To explore the application of prompt engineering in LLMs and to examine the reliability of LLMs, different styles of prompts were designed and used to ask different LLMs about their agreement with the American Academy of Orthopedic Surgeons (AAOS) osteoarthritis (OA) evidence-based guidelines. Each question was asked 5 times. We compared the consistency of the findings with guidelines across different evidence levels for different prompts and assessed the reliability of different prompts by asking the same question 5 times. gpt-4-Web with ROT prompting had the highest overall consistency (62.9%) and a significant performance for strong recommendations, with a total consistency of 77.5%. The reliability of the different LLMs for different prompts was not stable (Fleiss kappa ranged from −0.002 to 0.984). This study revealed that different prompts had variable effects across various models, and the gpt-4-Web with ROT prompt was the most consistent. An appropriate prompt could improve the accuracy of responses to professional medical questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助林希希采纳,获得10
刚刚
1秒前
byy发布了新的文献求助10
1秒前
1秒前
1秒前
坚强的樱发布了新的文献求助10
2秒前
2秒前
Joyce完成签到,获得积分10
2秒前
2秒前
Hik发布了新的文献求助10
2秒前
lyc完成签到,获得积分10
3秒前
不安初夏发布了新的文献求助10
3秒前
Dank1ng完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
jyylrl完成签到,获得积分10
5秒前
斯文明杰发布了新的文献求助10
5秒前
最短的咒发布了新的文献求助10
6秒前
ajing完成签到 ,获得积分10
6秒前
自由南珍发布了新的文献求助10
6秒前
6秒前
6秒前
失似发布了新的文献求助10
7秒前
迟大猫应助123456采纳,获得10
8秒前
8秒前
11发布了新的文献求助10
9秒前
科研凡发布了新的文献求助10
9秒前
10秒前
九个烧卖完成签到,获得积分10
10秒前
sadsada发布了新的文献求助30
10秒前
田様应助归于水云身采纳,获得10
10秒前
10秒前
在水一方应助耶zyf采纳,获得10
11秒前
研友_LMN2rn完成签到,获得积分10
11秒前
阳阳完成签到,获得积分10
11秒前
帅气的怼怼完成签到,获得积分10
11秒前
刻苦浩然完成签到,获得积分10
11秒前
害羞聋五发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552652
求助须知:如何正确求助?哪些是违规求助? 3128698
关于积分的说明 9379308
捐赠科研通 2827873
什么是DOI,文献DOI怎么找? 1554775
邀请新用户注册赠送积分活动 725554
科研通“疑难数据库(出版商)”最低求助积分说明 715031