清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FLight: A lightweight federated learning framework in edge and fog computing

计算机科学 云计算 服务器 边缘计算 分布式计算 雾计算 边缘设备 GSM演进的增强数据速率 架空(工程) 延迟(音频) 计算机网络 操作系统 人工智能 电信
作者
Wuji Zhu,Mohammad Goudarzi,Rajkumar Buyya
出处
期刊:Software - Practice and Experience [Wiley]
卷期号:54 (5): 813-841
标识
DOI:10.1002/spe.3300
摘要

Abstract The number of Internet of Things (IoT) applications, especially latency‐sensitive ones, have been significantly increased. So, cloud computing, as one of the main enablers of the IoT that offers centralized services, cannot solely satisfy the requirements of IoT applications. Edge/fog computing, as a distributed computing paradigm, processes, and stores IoT data at the edge of the network, offering low latency, reduced network traffic, and higher bandwidth. The edge/fog resources are often less powerful compared to cloud, and IoT data is dispersed among many geo‐distributed servers. Hence, Federated Learning (FL), which is a machine learning approach that enables multiple distributed servers to collaborate on building models without exchanging the raw data, is well‐suited to edge/fog computing environments, where data privacy is of paramount importance. Besides, to manage different FL tasks on edge/fog computing environments, a lightweight resource management framework is required to manage different incoming FL tasks while does not incur significant overhead on the system. Accordingly, in this article, we propose a lightweight FL framework, called FLight, to be deployed on a diverse range of devices, ranging from resource‐limited edge/fog devices to powerful cloud servers. FLight is implemented based on the FogBus2 framework, which is a containerized distributed resource management framework. Moreover, FLight integrates both synchronous and asynchronous models of FL. Besides, we propose a lightweight heuristic‐based worker selection algorithm to select a suitable set of available workers to participate in the training step to obtain higher training time efficiency. The obtained results demonstrate the efficiency of the FLight. The worker selection technique reduces the training time of reaching 80% accuracy by 34% compared to sequential training, while asynchronous one helps to improve synchronous FL training time by 64%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
19秒前
李健应助krajicek采纳,获得10
20秒前
25秒前
mmyhn举报哲别求助涉嫌违规
28秒前
Sunny完成签到,获得积分10
29秒前
雪山飞龙完成签到,获得积分10
33秒前
NicoLi应助雪山飞龙采纳,获得10
50秒前
51秒前
52秒前
krajicek发布了新的文献求助10
58秒前
NicoLi应助雪山飞龙采纳,获得10
1分钟前
1分钟前
刘茂甫应助zhang20082418采纳,获得10
1分钟前
浚稚完成签到 ,获得积分10
1分钟前
zhang20082418完成签到,获得积分10
1分钟前
oucedv发布了新的文献求助10
2分钟前
无悔完成签到 ,获得积分10
2分钟前
孟寐以求完成签到 ,获得积分10
2分钟前
2分钟前
大模型应助科研通管家采纳,获得10
3分钟前
Only完成签到 ,获得积分10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
3分钟前
zhangguo完成签到 ,获得积分10
4分钟前
Cosmosurfer完成签到,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
5分钟前
程程发布了新的文献求助10
5分钟前
5分钟前
6分钟前
白华苍松发布了新的文献求助10
6分钟前
6分钟前
6分钟前
刘丰完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
白华苍松发布了新的文献求助10
7分钟前
7分钟前
gang发布了新的文献求助10
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131401
关于积分的说明 9391049
捐赠科研通 2831096
什么是DOI,文献DOI怎么找? 1556372
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890