FLight: A lightweight federated learning framework in edge and fog computing

计算机科学 云计算 服务器 边缘计算 分布式计算 雾计算 边缘设备 GSM演进的增强数据速率 架空(工程) 延迟(音频) 计算机网络 操作系统 人工智能 电信
作者
Wuji Zhu,Mohammad Goudarzi,Rajkumar Buyya
出处
期刊:Software - Practice and Experience [Wiley]
卷期号:54 (5): 813-841
标识
DOI:10.1002/spe.3300
摘要

Abstract The number of Internet of Things (IoT) applications, especially latency‐sensitive ones, have been significantly increased. So, cloud computing, as one of the main enablers of the IoT that offers centralized services, cannot solely satisfy the requirements of IoT applications. Edge/fog computing, as a distributed computing paradigm, processes, and stores IoT data at the edge of the network, offering low latency, reduced network traffic, and higher bandwidth. The edge/fog resources are often less powerful compared to cloud, and IoT data is dispersed among many geo‐distributed servers. Hence, Federated Learning (FL), which is a machine learning approach that enables multiple distributed servers to collaborate on building models without exchanging the raw data, is well‐suited to edge/fog computing environments, where data privacy is of paramount importance. Besides, to manage different FL tasks on edge/fog computing environments, a lightweight resource management framework is required to manage different incoming FL tasks while does not incur significant overhead on the system. Accordingly, in this article, we propose a lightweight FL framework, called FLight, to be deployed on a diverse range of devices, ranging from resource‐limited edge/fog devices to powerful cloud servers. FLight is implemented based on the FogBus2 framework, which is a containerized distributed resource management framework. Moreover, FLight integrates both synchronous and asynchronous models of FL. Besides, we propose a lightweight heuristic‐based worker selection algorithm to select a suitable set of available workers to participate in the training step to obtain higher training time efficiency. The obtained results demonstrate the efficiency of the FLight. The worker selection technique reduces the training time of reaching 80% accuracy by 34% compared to sequential training, while asynchronous one helps to improve synchronous FL training time by 64%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助勤劳的音响采纳,获得10
1秒前
yy完成签到,获得积分10
1秒前
1秒前
陈嘉木完成签到,获得积分10
1秒前
121完成签到,获得积分10
1秒前
可爱的函函应助Herry-Jeremy采纳,获得10
2秒前
2秒前
2秒前
科研通AI6.1应助杨yang采纳,获得10
2秒前
linkyu完成签到,获得积分10
3秒前
ladysansan完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
hyl发布了新的文献求助10
3秒前
3秒前
4秒前
吴鹏完成签到,获得积分10
4秒前
4秒前
我陈雯雯实名上网完成签到,获得积分10
4秒前
丁丁丁发布了新的文献求助10
4秒前
5秒前
5秒前
old赵发布了新的文献求助10
5秒前
Akirus应助guojingjing采纳,获得10
5秒前
5秒前
6秒前
庆何逐发布了新的文献求助30
7秒前
王小明完成签到,获得积分10
8秒前
8秒前
激昂的逊完成签到 ,获得积分10
8秒前
8秒前
9秒前
keyu完成签到,获得积分10
9秒前
9秒前
orixero应助Yolo采纳,获得10
9秒前
hyl完成签到,获得积分10
9秒前
10秒前
同济外外博完成签到 ,获得积分10
10秒前
shadow发布了新的文献求助20
10秒前
量子星尘发布了新的文献求助10
10秒前
尊敬向雪发布了新的文献求助20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133