清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FLight: A lightweight federated learning framework in edge and fog computing

计算机科学 云计算 服务器 边缘计算 分布式计算 雾计算 边缘设备 GSM演进的增强数据速率 架空(工程) 延迟(音频) 计算机网络 操作系统 人工智能 电信
作者
Wuji Zhu,Mohammad Goudarzi,Rajkumar Buyya
出处
期刊:Software - Practice and Experience [Wiley]
卷期号:54 (5): 813-841
标识
DOI:10.1002/spe.3300
摘要

Abstract The number of Internet of Things (IoT) applications, especially latency‐sensitive ones, have been significantly increased. So, cloud computing, as one of the main enablers of the IoT that offers centralized services, cannot solely satisfy the requirements of IoT applications. Edge/fog computing, as a distributed computing paradigm, processes, and stores IoT data at the edge of the network, offering low latency, reduced network traffic, and higher bandwidth. The edge/fog resources are often less powerful compared to cloud, and IoT data is dispersed among many geo‐distributed servers. Hence, Federated Learning (FL), which is a machine learning approach that enables multiple distributed servers to collaborate on building models without exchanging the raw data, is well‐suited to edge/fog computing environments, where data privacy is of paramount importance. Besides, to manage different FL tasks on edge/fog computing environments, a lightweight resource management framework is required to manage different incoming FL tasks while does not incur significant overhead on the system. Accordingly, in this article, we propose a lightweight FL framework, called FLight, to be deployed on a diverse range of devices, ranging from resource‐limited edge/fog devices to powerful cloud servers. FLight is implemented based on the FogBus2 framework, which is a containerized distributed resource management framework. Moreover, FLight integrates both synchronous and asynchronous models of FL. Besides, we propose a lightweight heuristic‐based worker selection algorithm to select a suitable set of available workers to participate in the training step to obtain higher training time efficiency. The obtained results demonstrate the efficiency of the FLight. The worker selection technique reduces the training time of reaching 80% accuracy by 34% compared to sequential training, while asynchronous one helps to improve synchronous FL training time by 64%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Panther完成签到,获得积分10
6秒前
黙宇循光完成签到 ,获得积分10
8秒前
卡卡罗特先森完成签到 ,获得积分10
9秒前
邓代容完成签到 ,获得积分10
40秒前
41秒前
科研通AI6应助fishway采纳,获得10
42秒前
57秒前
1分钟前
万能图书馆应助fishway采纳,获得10
1分钟前
挣钱抱男模完成签到,获得积分10
1分钟前
1分钟前
南桥发布了新的文献求助10
1分钟前
Una完成签到,获得积分10
1分钟前
1分钟前
uppercrusteve完成签到,获得积分10
1分钟前
希望天下0贩的0应助饺子采纳,获得10
1分钟前
研友_VZG7GZ应助南桥采纳,获得10
1分钟前
2分钟前
饺子发布了新的文献求助10
2分钟前
Akim应助fishway采纳,获得10
2分钟前
小西完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
饺子完成签到,获得积分10
2分钟前
斯文的傲珊完成签到,获得积分10
2分钟前
一个小胖子完成签到,获得积分10
2分钟前
SciGPT应助bji采纳,获得10
2分钟前
咯咯咯完成签到 ,获得积分10
2分钟前
浮游应助fishway采纳,获得10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
fishway发布了新的文献求助10
3分钟前
wood完成签到,获得积分10
3分钟前
Tong完成签到,获得积分0
3分钟前
3分钟前
bji发布了新的文献求助10
3分钟前
大个应助fishway采纳,获得10
3分钟前
一路有你完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418494
求助须知:如何正确求助?哪些是违规求助? 4534207
关于积分的说明 14143270
捐赠科研通 4450428
什么是DOI,文献DOI怎么找? 2441241
邀请新用户注册赠送积分活动 1432967
关于科研通互助平台的介绍 1410352