FLight: A lightweight federated learning framework in edge and fog computing

计算机科学 云计算 服务器 边缘计算 分布式计算 雾计算 边缘设备 GSM演进的增强数据速率 架空(工程) 延迟(音频) 计算机网络 操作系统 人工智能 电信
作者
Wuji Zhu,Mohammad Goudarzi,Rajkumar Buyya
出处
期刊:Software - Practice and Experience [Wiley]
卷期号:54 (5): 813-841
标识
DOI:10.1002/spe.3300
摘要

Abstract The number of Internet of Things (IoT) applications, especially latency‐sensitive ones, have been significantly increased. So, cloud computing, as one of the main enablers of the IoT that offers centralized services, cannot solely satisfy the requirements of IoT applications. Edge/fog computing, as a distributed computing paradigm, processes, and stores IoT data at the edge of the network, offering low latency, reduced network traffic, and higher bandwidth. The edge/fog resources are often less powerful compared to cloud, and IoT data is dispersed among many geo‐distributed servers. Hence, Federated Learning (FL), which is a machine learning approach that enables multiple distributed servers to collaborate on building models without exchanging the raw data, is well‐suited to edge/fog computing environments, where data privacy is of paramount importance. Besides, to manage different FL tasks on edge/fog computing environments, a lightweight resource management framework is required to manage different incoming FL tasks while does not incur significant overhead on the system. Accordingly, in this article, we propose a lightweight FL framework, called FLight, to be deployed on a diverse range of devices, ranging from resource‐limited edge/fog devices to powerful cloud servers. FLight is implemented based on the FogBus2 framework, which is a containerized distributed resource management framework. Moreover, FLight integrates both synchronous and asynchronous models of FL. Besides, we propose a lightweight heuristic‐based worker selection algorithm to select a suitable set of available workers to participate in the training step to obtain higher training time efficiency. The obtained results demonstrate the efficiency of the FLight. The worker selection technique reduces the training time of reaching 80% accuracy by 34% compared to sequential training, while asynchronous one helps to improve synchronous FL training time by 64%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助我叫杨二虎采纳,获得10
刚刚
刚刚
沐光而行完成签到,获得积分10
1秒前
尤萨完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
君故关注了科研通微信公众号
1秒前
小波发布了新的文献求助10
1秒前
LYQ完成签到 ,获得积分10
2秒前
打打应助碧蓝青梦采纳,获得10
2秒前
科研小乞丐完成签到,获得积分10
2秒前
兴奋孤丝完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
完美世界应助KIM采纳,获得10
3秒前
1751587229发布了新的文献求助10
3秒前
懒羊羊发布了新的文献求助10
3秒前
4秒前
4秒前
观莲客完成签到,获得积分10
4秒前
4秒前
爆米花应助实验室纯牲采纳,获得10
5秒前
lizhiqian2024发布了新的文献求助10
5秒前
Owen应助AHHUI采纳,获得30
5秒前
5秒前
6秒前
阳光的虔纹完成签到 ,获得积分10
6秒前
万能图书馆应助llllqqq采纳,获得10
6秒前
wang发布了新的文献求助10
6秒前
晨雾锁阳完成签到 ,获得积分10
7秒前
Ava应助Hommand_藏山采纳,获得10
7秒前
7秒前
7秒前
Criminology34应助Blossom采纳,获得10
7秒前
丘比特应助gzmejiji采纳,获得10
8秒前
科研通AI6应助huihui采纳,获得10
8秒前
zhl发布了新的文献求助10
8秒前
Beacon发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759534
求助须知:如何正确求助?哪些是违规求助? 5520722
关于积分的说明 15394460
捐赠科研通 4896615
什么是DOI,文献DOI怎么找? 2633799
邀请新用户注册赠送积分活动 1581879
关于科研通互助平台的介绍 1537300