FLight: A lightweight federated learning framework in edge and fog computing

计算机科学 云计算 服务器 边缘计算 分布式计算 雾计算 边缘设备 GSM演进的增强数据速率 架空(工程) 延迟(音频) 计算机网络 操作系统 人工智能 电信
作者
Wuji Zhu,Mohammad Goudarzi,Rajkumar Buyya
出处
期刊:Software - Practice and Experience [Wiley]
卷期号:54 (5): 813-841
标识
DOI:10.1002/spe.3300
摘要

Abstract The number of Internet of Things (IoT) applications, especially latency‐sensitive ones, have been significantly increased. So, cloud computing, as one of the main enablers of the IoT that offers centralized services, cannot solely satisfy the requirements of IoT applications. Edge/fog computing, as a distributed computing paradigm, processes, and stores IoT data at the edge of the network, offering low latency, reduced network traffic, and higher bandwidth. The edge/fog resources are often less powerful compared to cloud, and IoT data is dispersed among many geo‐distributed servers. Hence, Federated Learning (FL), which is a machine learning approach that enables multiple distributed servers to collaborate on building models without exchanging the raw data, is well‐suited to edge/fog computing environments, where data privacy is of paramount importance. Besides, to manage different FL tasks on edge/fog computing environments, a lightweight resource management framework is required to manage different incoming FL tasks while does not incur significant overhead on the system. Accordingly, in this article, we propose a lightweight FL framework, called FLight, to be deployed on a diverse range of devices, ranging from resource‐limited edge/fog devices to powerful cloud servers. FLight is implemented based on the FogBus2 framework, which is a containerized distributed resource management framework. Moreover, FLight integrates both synchronous and asynchronous models of FL. Besides, we propose a lightweight heuristic‐based worker selection algorithm to select a suitable set of available workers to participate in the training step to obtain higher training time efficiency. The obtained results demonstrate the efficiency of the FLight. The worker selection technique reduces the training time of reaching 80% accuracy by 34% compared to sequential training, while asynchronous one helps to improve synchronous FL training time by 64%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小药丸包饺子完成签到,获得积分10
刚刚
烯灯完成签到,获得积分10
刚刚
端庄的蜡烛完成签到,获得积分10
1秒前
剁手党完成签到,获得积分10
1秒前
王楠楠完成签到 ,获得积分10
1秒前
kenchilie完成签到 ,获得积分10
2秒前
鲲鹏完成签到 ,获得积分10
2秒前
高高的无颜完成签到,获得积分10
3秒前
Zp完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
hq完成签到,获得积分10
4秒前
laola完成签到,获得积分10
4秒前
几又完成签到,获得积分10
4秒前
joy完成签到,获得积分0
5秒前
赵yy完成签到,获得积分0
5秒前
文艺的元菱完成签到,获得积分10
5秒前
shanshan完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
飘逸鸽子完成签到,获得积分10
9秒前
TRY完成签到,获得积分10
9秒前
常改名完成签到,获得积分10
9秒前
秋秋完成签到 ,获得积分10
10秒前
tangaohao_123456完成签到,获得积分10
10秒前
开心没烦恼完成签到,获得积分10
10秒前
靓丽的沁发布了新的文献求助10
10秒前
levanquy260602完成签到,获得积分10
10秒前
10秒前
DimWhite完成签到,获得积分10
11秒前
顺心的问薇完成签到 ,获得积分10
11秒前
11秒前
MuMu完成签到,获得积分0
13秒前
laity完成签到,获得积分10
13秒前
断水断粮的科研民工完成签到,获得积分10
14秒前
风筝飞完成签到 ,获得积分10
14秒前
酬勤完成签到,获得积分10
14秒前
炖地瓜完成签到 ,获得积分10
14秒前
管不住嘴的迪迪完成签到,获得积分10
15秒前
景平完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658633
求助须知:如何正确求助?哪些是违规求助? 4823327
关于积分的说明 15082234
捐赠科研通 4817197
什么是DOI,文献DOI怎么找? 2577998
邀请新用户注册赠送积分活动 1532791
关于科研通互助平台的介绍 1491515