FLight: A lightweight federated learning framework in edge and fog computing

计算机科学 云计算 服务器 边缘计算 分布式计算 雾计算 边缘设备 GSM演进的增强数据速率 架空(工程) 延迟(音频) 计算机网络 操作系统 人工智能 电信
作者
Wuji Zhu,Mohammad Goudarzi,Rajkumar Buyya
出处
期刊:Software - Practice and Experience [Wiley]
卷期号:54 (5): 813-841
标识
DOI:10.1002/spe.3300
摘要

Abstract The number of Internet of Things (IoT) applications, especially latency‐sensitive ones, have been significantly increased. So, cloud computing, as one of the main enablers of the IoT that offers centralized services, cannot solely satisfy the requirements of IoT applications. Edge/fog computing, as a distributed computing paradigm, processes, and stores IoT data at the edge of the network, offering low latency, reduced network traffic, and higher bandwidth. The edge/fog resources are often less powerful compared to cloud, and IoT data is dispersed among many geo‐distributed servers. Hence, Federated Learning (FL), which is a machine learning approach that enables multiple distributed servers to collaborate on building models without exchanging the raw data, is well‐suited to edge/fog computing environments, where data privacy is of paramount importance. Besides, to manage different FL tasks on edge/fog computing environments, a lightweight resource management framework is required to manage different incoming FL tasks while does not incur significant overhead on the system. Accordingly, in this article, we propose a lightweight FL framework, called FLight, to be deployed on a diverse range of devices, ranging from resource‐limited edge/fog devices to powerful cloud servers. FLight is implemented based on the FogBus2 framework, which is a containerized distributed resource management framework. Moreover, FLight integrates both synchronous and asynchronous models of FL. Besides, we propose a lightweight heuristic‐based worker selection algorithm to select a suitable set of available workers to participate in the training step to obtain higher training time efficiency. The obtained results demonstrate the efficiency of the FLight. The worker selection technique reduces the training time of reaching 80% accuracy by 34% compared to sequential training, while asynchronous one helps to improve synchronous FL training time by 64%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zheng完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
星辰大海应助荔枝采纳,获得10
3秒前
LJL发布了新的文献求助10
4秒前
meng发布了新的文献求助10
4秒前
无私的颤完成签到,获得积分10
4秒前
lucky完成签到 ,获得积分10
5秒前
Zel博博完成签到,获得积分10
5秒前
谷粱诗云完成签到,获得积分10
5秒前
yar应助myuniv采纳,获得10
5秒前
xc完成签到 ,获得积分10
6秒前
6秒前
干净的天与完成签到,获得积分10
6秒前
哈基米德应助毅诚菌采纳,获得10
8秒前
铁甲小杨完成签到,获得积分0
8秒前
9秒前
卡机了完成签到,获得积分10
10秒前
平淡绿柏完成签到,获得积分10
12秒前
架子猫发布了新的文献求助10
12秒前
12秒前
颠覆乾坤发布了新的文献求助10
13秒前
乔乔完成签到,获得积分10
14秒前
学术小白完成签到,获得积分10
14秒前
min完成签到,获得积分10
14秒前
14秒前
汉堡包应助slin_sjtu采纳,获得10
14秒前
czx完成签到,获得积分10
15秒前
szxnb666发布了新的文献求助30
15秒前
MRJJJJ完成签到,获得积分10
15秒前
chaser完成签到,获得积分10
15秒前
光亮白山完成签到 ,获得积分10
16秒前
科研通AI2S应助大橙子采纳,获得10
16秒前
16秒前
小马甲应助meng采纳,获得10
17秒前
pz发布了新的文献求助10
17秒前
zhou1216完成签到 ,获得积分10
18秒前
小格子完成签到,获得积分10
19秒前
zgt01发布了新的文献求助10
19秒前
锥子完成签到,获得积分10
19秒前
Yjh完成签到,获得积分10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022