已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Efficient Privacy-Preserving Ranked Multi-Keyword Retrieval for Multiple Data Owners in Outsourced Cloud

计算机科学 云计算 关键字搜索 信息隐私 隐私保护 情报检索 数据挖掘 计算机安全 操作系统
作者
Dong Li,Jiahui Wu,Junqing Le,Qingguo Lü,Xiaofeng Liao,Tao Xiang
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:17 (2): 406-419 被引量:1
标识
DOI:10.1109/tsc.2023.3341799
摘要

With the widespread use of cloud storage technology by individuals and organizations, data providers usually send their data to cloud for storage to reduce memory pressure, and allow the users to retrieve these data, which has become the trend of rapid data retrieval. To guarantee the data confidentiality, several research works have been developed on encrypted cloud data for ranked multi-keyword retrieval. Nevertheless, most of these schemes are disabled since they cannot resist keyword guessing attacks. Moreover, the ranked top- $K$ search results obtained by the subscriber from the encrypted cloud data are inaccurate. To overcome these drawbacks, we design a novel and efficient privacy-preserving ranked multi-keyword retrieval scheme (named as PRMKR) in this paper. With PRMKR, the data and the inverted indexes which belong to the data provider can be securely transferred to the cloud server. In addition, a registered subscriber can request accurate retrieval services without compromising his/her trapdoor information to the cloud server. Specifically, we design an encryption searchable plugin-in server and lower dimensional inverted indexesvector for data owners, which can further guarantee data confidentiality of the data owner and improve search efficiency, respectively. Our rigorous security proof demonstrates that PRMKR can withstand keyword guessing attacks. Finally, experimental evaluations confirm that PRMKR has decent computational and communication efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lolo关注了科研通微信公众号
2秒前
科研通AI2S应助南桥采纳,获得10
2秒前
2秒前
华仔应助扎心采纳,获得10
2秒前
5秒前
HEIKU应助潇潇雨歇采纳,获得10
5秒前
czb666发布了新的文献求助10
6秒前
7秒前
大帅比完成签到 ,获得积分10
8秒前
循环bug完成签到,获得积分10
9秒前
赵田完成签到 ,获得积分10
10秒前
12秒前
scq完成签到 ,获得积分10
13秒前
赵琪完成签到,获得积分10
15秒前
15秒前
denise完成签到,获得积分10
17秒前
赵琪发布了新的文献求助10
18秒前
rsaorestoaerstn完成签到,获得积分10
19秒前
20秒前
Hello应助扎心采纳,获得10
21秒前
木深完成签到,获得积分10
23秒前
小乐儿~完成签到,获得积分10
25秒前
31秒前
33秒前
34秒前
34秒前
35秒前
旋转木马9个完成签到 ,获得积分10
35秒前
橙子快跑发布了新的文献求助10
36秒前
朝气完成签到,获得积分10
37秒前
37秒前
Hello应助白大帅气采纳,获得10
38秒前
容言完成签到,获得积分10
38秒前
学渣路过完成签到,获得积分0
39秒前
Owen应助科研通管家采纳,获得10
39秒前
39秒前
深情安青应助科研通管家采纳,获得10
39秒前
liyun发布了新的文献求助10
40秒前
41秒前
hushan53发布了新的文献求助10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946571
关于积分的说明 8530851
捐赠科研通 2622316
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838