Macroscopic modeling of mixed bi-modal urban networks: A hybrid model of accumulation- and trip-based principles

情态动词 计算机科学 材料科学 高分子化学
作者
Mansour Johari,Mehdi Keyvan‐Ekbatani
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:182: 102921-102921
标识
DOI:10.1016/j.trb.2024.102921
摘要

Network-level traffic flow models either assume steady-state urban flows (i.e. accumulation-based models) or track the movement of all vehicles (i.e. trip-based models). The steady-state assumption present in the accumulation-based models may pose a challenge in light of the multi-modal nature of urban flows. It might be indeed a rough assumption for the flow of some transportation modes like buses, cruising-for-parking vehicles, taxis, and on-demand vehicles. Trip-based models address this concern, however, they need significant parameter calibration effort and are not computationally efficient, which substantially reduces the practicality of these models in real-world applications. Nevertheless, despite the critical importance of developing multi-modal traffic flow models, few attempts have been made to investigate these models in network macroscopic fundamental diagram (NMFD)-related literature. This paper bridges this gap by developing a hybrid network-level traffic flow model for mixed bi-modal (i.e. car and bus) networks. The present hybrid model reproduces the dynamics of car flows via accumulation-based model principles while tracking the movement of buses using the trip-based model. This effort also includes the development of a new FIFO-based entrance function to ensure different modes experience the same delay under saturated traffic conditions. Different numerical experiments are conducted to study the hybrid model performance and to compare it with that of accumulation-based and trip-based models in both steady-state and transition periods under different traffic conditions. Our observations reveal that the hybrid model simulates the dynamics of cars and buses by closely following the behavior of its components under free-flow conditions. The model also outperforms the accumulation-based model under saturated traffic conditions while being considerably less demanding than the trip-based model. A further investigation of the model performance is performed for networks with different bus shares in both free-flow and saturated traffic conditions, confirming the results of the initial numerical experiments. The hybrid model's computational efficiency is demonstrated. The potential real-world applications of the hybrid model in development of bi-modal network-level simulation models, NMFD-based control strategies along with bus space allocation policies, public transport operation problems, modeling of cruising-for-parking vehicles, taxis, and on-demand vehicles, and modeling and application of autonomous modular vehicles are discussed and future research directions are highlighted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西部森林完成签到,获得积分10
刚刚
科目三应助邢文瑞采纳,获得10
2秒前
哭泣笑阳完成签到,获得积分20
3秒前
4秒前
Orange应助CCC采纳,获得10
5秒前
Ruby完成签到,获得积分10
5秒前
6秒前
6秒前
哭泣笑阳发布了新的文献求助10
10秒前
11秒前
Emmm完成签到,获得积分10
11秒前
11秒前
11秒前
lijin发布了新的文献求助10
12秒前
听云完成签到 ,获得积分10
12秒前
北海应助dream采纳,获得10
12秒前
Awoe发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
玛卡巴卡发布了新的文献求助10
16秒前
彭于晏应助champagne采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
lii应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
kingwill应助科研通管家采纳,获得50
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
fts发布了新的文献求助10
21秒前
21秒前
深情安青应助小小铱采纳,获得10
21秒前
大个应助夏五鱼采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976058
求助须知:如何正确求助?哪些是违规求助? 3520294
关于积分的说明 11202245
捐赠科研通 3256804
什么是DOI,文献DOI怎么找? 1798471
邀请新用户注册赠送积分活动 877610
科研通“疑难数据库(出版商)”最低求助积分说明 806496