多硫化物
催化作用
电解质
氧化还原
材料科学
分离器(采油)
硫黄
锂(药物)
无机化学
结合能
密度泛函理论
化学工程
纳米技术
化学
电极
有机化学
物理化学
计算化学
医学
工程类
冶金
内分泌学
物理
核物理学
热力学
作者
Huifang Xu,Qingbin Jiang,Kwan San Hui,Shuo Wang,Lingwen Liu,Tianyu Chen,Yunshan Zheng,Weng Fai Ip,Duc Anh Dinh,Chenyang Zha,Zhan Lin,Kwun Nam Hui
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-03-11
卷期号:18 (12): 8839-8852
被引量:9
标识
DOI:10.1021/acsnano.3c11903
摘要
Catalytic conversion of polysulfides emerges as a promising approach to improve the kinetics and mitigate polysulfide shuttling in lithium–sulfur (Li–S) batteries, especially under conditions of high sulfur loading and lean electrolyte. Herein, we present a separator architecture that incorporates double-terminal binding (DTB) sites within a nitrogen-doped carbon framework, consisting of polar Co0.85Se and Co clusters (Co/Co0.85Se@NC), to enhance the durability of Li–S batteries. The uniformly dispersed clusters of polar Co0.85Se and Co offer abundant active sites for lithium polysulfides (LiPSs), enabling efficient LiPS conversion while also serving as anchors through a combination of chemical interactions. Density functional theory calculations, along with in situ Raman and X-ray diffraction characterizations, reveal that the DTB effect strengthens the binding energy to polysulfides and lowers the energy barriers of polysulfide redox reactions. Li–S batteries utilizing the Co/Co0.85Se@NC-modified separator demonstrate exceptional cycling stability (0.042% per cycle over 1000 cycles at 2 C) and rate capability (849 mAh g–1 at 3 C), as well as deliver an impressive areal capacity of 10.0 mAh cm–2 even in challenging conditions with a high sulfur loading (10.7 mg cm–2) and lean electrolyte environments (5.8 μL mg–1). The DTB site strategy offers valuable insights into the development of high-performance Li–S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI