Black soils, renowned for their natural fertility, hold pivotal significance in global food production and play a crucial role in mitigating and adapting to climate change due to their excellent capacity for organic carbon sequestration. However, they are subject to moderate to severe erosion due to the land use change, overuse of agrochemicals and high-intensity ploughing. Nearly 50% of organic carbon sequestration has been lost, resulting in nutrient imbalances, acidification, and biodiversity loss in black soil areas, severely compromising the capacity of food production and environmental sustainability worldwide. China has ambitiously taken strides in the conservation and utilization of black soils, enacting its first law to protect black these invaluable resources, which have been promising. This research is developed to clarify the effect of China's black soil conservation policies and projects on national grain supply security and greenhouse gas (GHG) emissions. It measures the contributions of grain production and GHG emissions in the black soil region in northeast China. Meanwhile, it analyzes the spatial and temporal characteristics of counties in advantage of grain production and GHG emissions from grain cultivation. Through econometric analysis, this research evaluates the effectiveness of the pilot implementation of black soil conservation policies. Furthermore, it investigates the impacts of a comprehensive promotion of these policies, including optimization of grain structures, conservation tillage, organic soil cover, and nutrient management, on the future stabilization of national grain supply and the reduction of agricultural GHG emissions. The results will serve as valuable information for global collaboration on black soil conservation and enhancement of agricultural land system management.