纳米尺度
背景(考古学)
无定形二氧化硅
工作流程
硅
纳米
纳米技术
计算机科学
半导体
二氧化硅
比例(比率)
原子单位
无定形固体
材料科学
化学
光电子学
物理
化学工程
结晶学
工程类
量子力学
古生物学
数据库
冶金
复合材料
生物
作者
Linus C. Erhard,Jochen Rohrer,Karsten Albe,Volker L. Deringer
标识
DOI:10.1038/s41467-024-45840-9
摘要
Abstract Silicon–oxygen compounds are among the most important ones in the natural sciences, occurring as building blocks in minerals and being used in semiconductors and catalysis. Beyond the well-known silicon dioxide, there are phases with different stoichiometric composition and nanostructured composites. One of the key challenges in understanding the Si–O system is therefore to accurately account for its nanoscale heterogeneity beyond the length scale of individual atoms. Here we show that a unified computational description of the full Si–O system is indeed possible, based on atomistic machine learning coupled to an active-learning workflow. We showcase applications to very-high-pressure silica, to surfaces and aerogels, and to the structure of amorphous silicon monoxide. In a wider context, our work illustrates how structural complexity in functional materials beyond the atomic and few-nanometre length scales can be captured with active machine learning.
科研通智能强力驱动
Strongly Powered by AbleSci AI