Sclera-TransFuse: Fusing Swin Transformer and CNN for Accurate Sclera Segmentation

巩膜 计算机科学 分割 人工智能 变压器 图像分割 计算机视觉 工程类 医学 电气工程 眼科 电压
作者
Haiqing Li,Caiyong Wang,Guangzhe Zhao,Zhaofeng He,Yunlong Wang,Zhenan Sun
标识
DOI:10.1109/ijcb57857.2023.10448814
摘要

Sclera segmentation is a crucial step in sclera recognition, which has been greatly advanced by Convolutional Neural Networks (CNNs). However, when dealing with non-ideal eye images, many existing CNN-based approaches are still prone to failure. One major reason is that due to the limited range of receptive fields, CNNs are difficult to effectively model global semantic relevance and thus robustly resist noise interference. To solve this problem, this paper proposes a novel two-stream hybrid model, named Sclera-TransFuse, to integrate classical ResNet-34 and recently emerging Swin Transformer encoders. Specially, the self-attentive Swin Transformer has shown a strong ability in capturing long-range spatial dependencies and has a hierarchical structure similar to CNNs. The dual encoders firstly extract coarse- and fine-grained feature representations at hierarchical stages, separately. Then a novel Cross-Domain Fusion (CDF) module based on information interaction and self-attention mechanism is introduced to efficiently fuse the multi-scale features extracted from dual encoders. Finally, the fused features are progressively upsampled and aggregated to predict the sclera masks in the decoder meanwhile deep supervision strategies are employed to learn intermediate feature representations better and faster. Experimental results show that Sclera-TransFuse achieves state-of-the-art performance on various sclera segmentation benchmarks. Additionally, a UBIRIS.v2 subset of 683 eye images with manually labeled sclera masks, and our codes are publicly available to the community through https://github.com/Ihqqq/Sclera-TransFuse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xueshidaheng完成签到,获得积分0
1秒前
邢哥哥完成签到,获得积分10
3秒前
无相完成签到 ,获得积分10
3秒前
aimanqiankun55完成签到 ,获得积分10
4秒前
Mu丶tou完成签到,获得积分10
4秒前
鲨鱼游泳教练完成签到,获得积分10
5秒前
蜀山刀客完成签到,获得积分10
5秒前
xin_you完成签到,获得积分10
5秒前
大民王完成签到,获得积分10
5秒前
Winner完成签到,获得积分10
6秒前
lz完成签到,获得积分10
6秒前
Helios完成签到,获得积分10
6秒前
keyan完成签到,获得积分10
6秒前
CDI和LIB完成签到,获得积分10
6秒前
cttc完成签到,获得积分10
6秒前
风信子完成签到,获得积分10
7秒前
桥豆麻袋完成签到,获得积分10
8秒前
天明完成签到,获得积分10
8秒前
犹豫代曼完成签到,获得积分10
8秒前
BK_201完成签到,获得积分10
9秒前
木康薛完成签到,获得积分10
9秒前
啊啊啊啊发布了新的文献求助10
9秒前
ff完成签到,获得积分10
9秒前
abiorz完成签到,获得积分10
9秒前
chenkj完成签到,获得积分10
10秒前
鹏举瞰冷雨完成签到,获得积分10
10秒前
窗外是蔚蓝色完成签到,获得积分10
10秒前
EricSai完成签到,获得积分10
10秒前
ikun完成签到,获得积分10
10秒前
吐司炸弹完成签到,获得积分10
10秒前
Brief完成签到,获得积分10
11秒前
mayfly完成签到,获得积分10
11秒前
nanostu完成签到,获得积分10
11秒前
36456657应助科研通管家采纳,获得10
11秒前
36456657应助科研通管家采纳,获得10
11秒前
36456657应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
儒雅的若翠完成签到,获得积分10
12秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725509
求助须知:如何正确求助?哪些是违规求助? 3270406
关于积分的说明 9965753
捐赠科研通 2985443
什么是DOI,文献DOI怎么找? 1638024
邀请新用户注册赠送积分活动 777792
科研通“疑难数据库(出版商)”最低求助积分说明 747261