GS-TCGA: Gene Set-Based Analysis of The Cancer Genome Atlas

生物 计算生物学 基因 基因表达谱 基因表达 基因表达调控 转录组 遗传学
作者
Tarrion Baird,Rahul Roychoudhuri
出处
期刊:Journal of Computational Biology [Mary Ann Liebert, Inc.]
卷期号:31 (3): 229-240 被引量:1
标识
DOI:10.1089/cmb.2023.0278
摘要

Most tools for analyzing large gene expression datasets, including The Cancer Genome Atlas (TCGA), have focused on analyzing the expression of individual genes or inference of the abundance of specific cell types from whole transcriptome information. While these methods provide useful insights, they can overlook crucial process-based information that may enhance our understanding of cancer biology. In this study, we describe three novel tools incorporated into an online resource; gene set-based analysis of The Cancer Genome Atlas (GS-TCGA). GS-TCGA is designed to enable user-friendly exploration of TCGA data using gene set-based analysis, leveraging gene sets from the Molecular Signatures Database. GS-TCGA includes three unique tools: GS-Surv determines the association between the expression of gene sets and survival in human cancers. Co-correlative gene set enrichment analysis (CC-GSEA) utilizes interpatient heterogeneity in cancer gene expression to infer functions of specific genes based on GSEA of coregulated genes in TCGA. GS-Corr utilizes interpatient heterogeneity in cancer gene expression profiles to identify genes coregulated with the expression of specific gene sets in TCGA. Users are also able to upload custom gene sets for analysis with each tool. These tools empower researchers to perform survival analysis linked to gene set expression, explore the functional implications of gene coexpression, and identify potential gene regulatory mechanisms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助柠檬泡芙采纳,获得10
刚刚
852应助yvonnecao采纳,获得10
刚刚
聪慧小霜应助北大荒采纳,获得10
1秒前
有魅力的猫咪完成签到,获得积分10
1秒前
云边小卖部完成签到,获得积分10
1秒前
1秒前
小羊发布了新的文献求助10
1秒前
一周八颗蛋完成签到 ,获得积分10
2秒前
罗大壮完成签到,获得积分10
2秒前
yingrui完成签到,获得积分10
3秒前
ll完成签到 ,获得积分10
3秒前
3秒前
斯文败类应助superspace采纳,获得10
3秒前
sangxiuzhong完成签到,获得积分10
3秒前
服了您完成签到 ,获得积分10
3秒前
剑与芳华完成签到 ,获得积分10
3秒前
小佟完成签到,获得积分10
4秒前
David Zhang发布了新的文献求助10
4秒前
kk发布了新的文献求助10
4秒前
pihriyyy发布了新的文献求助10
4秒前
4秒前
英俊的咖啡豆完成签到 ,获得积分10
6秒前
认真的代柔完成签到,获得积分10
6秒前
科研一霸完成签到 ,获得积分10
6秒前
Tinasmiling给Tinasmiling的求助进行了留言
6秒前
伶俐柔发布了新的文献求助30
7秒前
leaolf应助微笑采纳,获得10
7秒前
隐形曼青应助lxy2002采纳,获得50
7秒前
mm完成签到 ,获得积分10
7秒前
香蕉觅云应助赵丽采纳,获得10
7秒前
董晨妮关注了科研通微信公众号
8秒前
文静达完成签到,获得积分10
8秒前
orixero应助神勇的曼文采纳,获得10
8秒前
8秒前
酷波er应助1101592875采纳,获得10
9秒前
9秒前
sangxiuzhong发布了新的文献求助20
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572422
求助须知:如何正确求助?哪些是违规求助? 3993137
关于积分的说明 12361436
捐赠科研通 3666284
什么是DOI,文献DOI怎么找? 2020629
邀请新用户注册赠送积分活动 1054898
科研通“疑难数据库(出版商)”最低求助积分说明 942305