亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-resolution velocity determination from particle images via neural networks with optical flow velocimetry regularization

物理 粒子图像测速 测速 平滑的 正规化(语言学) 光流 涡流 矢量场 人工神经网络 粒子跟踪测速 光学 算法 人工智能 机械 计算机科学 计算机视觉 湍流 图像(数学)
作者
Kexin Ji,Xin Hui,Qiang An
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (3) 被引量:2
标识
DOI:10.1063/5.0189524
摘要

Particle image velocimetry (PIV) and optical flow velocimetry (OFV) are important velocity measurement methods in the field of fluid dynamics. Nevertheless, the conventional cross correlation-based PIV method is beset by diminished resolution, while the OFV method exhibits computational sluggishness and susceptibility to noise. These constraints have somewhat delimited the applicability of PIV and OFV techniques. Recent attempts have introduced deep learning-based methods for analyzing PIV images, offering high-resolution velocity fields with computational efficiency, but their accuracy needs improvement. This study proposes four neural networks based on the well-established FlowNetS. They incorporate two distinct velocity constraints, namely, first-order velocity smoothing regularization and second-order grad (curl)–grad (div) regularization. In the networks, these constraints are used either independently or in combination with optical flow conservation (OFC). The performances of the networks have been assessed on six different flow configurations, and the results show that the network with the second-order regularization markedly outperforms the original network across all flows, demonstrating an enhanced capacity to capture larger-scale vortices. The network with the first-order regularization also exhibits superior performance compared to the original network except in the case of cylinder flow. Unexpectedly, the introduction of the OFC constraints results in a decline in network performance. This anomaly may stem from the network's inherent capability to capture optical flow features, rendering the OFC constraint less effective in providing guidance. In summary, this study underscores the substantial potential of neural networks incorporated with judicious physical constraints in PIV applications, enabling the determination of high-resolution, high-accuracy flow fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学丫发布了新的文献求助10
1秒前
1秒前
学丫完成签到,获得积分20
13秒前
16秒前
18秒前
忧虑的翠桃完成签到 ,获得积分10
19秒前
Jiawen发布了新的文献求助10
22秒前
LiAng发布了新的文献求助10
24秒前
橘子发布了新的文献求助10
27秒前
Jiawen完成签到,获得积分10
28秒前
45秒前
hey完成签到,获得积分10
50秒前
51秒前
51秒前
qwq发布了新的文献求助10
55秒前
望远Arena完成签到,获得积分10
56秒前
zhangqin发布了新的文献求助10
1分钟前
一一完成签到,获得积分20
1分钟前
在水一方应助莫里亚蒂采纳,获得10
1分钟前
1分钟前
1分钟前
莫里亚蒂完成签到,获得积分20
1分钟前
1分钟前
莫里亚蒂发布了新的文献求助10
1分钟前
洁白的故人完成签到 ,获得积分10
1分钟前
郭志康发布了新的文献求助10
1分钟前
1分钟前
lzw发布了新的文献求助10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
西北完成签到,获得积分10
1分钟前
1分钟前
西北发布了新的文献求助10
1分钟前
lzw完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455612
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022844
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502707
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387