Hy-TeC: a hybrid vision transformer model for high-resolution and large-scale mapping of canopy height

遥感 激光雷达 天蓬 环境科学 技术 树冠 雷达 计算机科学 地质学 地理 电离层 电信 考古 地球物理学
作者
Ibrahim Fayad,Philippe Ciais,Martin A. Schwartz,Jean‐Pierre Wigneron,Nicolas Baghdadi,Aurélien de Truchis,Alexandre d’Aspremont,Frédéric Frappart,Sassan Saatchi,Ewan Sean,Agnes Pellissier-Tanon,Hassan S. Bazzi
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:302: 113945-113945 被引量:12
标识
DOI:10.1016/j.rse.2023.113945
摘要

Accurate and timely monitoring of forest canopy height is critical for assessing forest dynamics, biodiversity, carbon sequestration as well as forest degradation and deforestation. Recent advances in deep learning techniques, coupled with the vast amount of spaceborne remote sensing data offer an unprecedented opportunity to map canopy height at high spatial and temporal resolutions. Current techniques for wall-to-wall canopy height mapping correlate remotely sensed information from optical and radar sensors in the 2D space to the vertical structure of trees using lidar's 3D measurement abilities serving as height proxies. While studies making use of deep learning algorithms have shown promising performances for the accurate mapping of canopy height, they have limitations due to the type of architectures and loss functions employed. Moreover, mapping canopy height over tropical forests remains poorly studied, and the accurate height estimation of tall canopies is a challenge due to signal saturation from optical and radar sensors, persistent cloud cover, and sometimes limited penetration capabilities of lidar instruments. In this study, we map heights at 10 m resolution across the diverse landscape of Ghana with a new vision transformer (ViT) model, dubbed Hy-TeC, optimized concurrently with a classification (discrete) and a regression (continuous) loss function. This model achieves significantly higher accuracy than previously employed convolutional-based approaches (ConvNets) optimized with only a continuous loss function. Hy-TeC results show that our proposed discrete/continuous loss formulation significantly increases the sensitivity for very tall trees (i.e., > 35 m). Overall, Hy-TeC has significantly reduced bias (0.8 m) and higher accuracy (RMSE = 6.6 m) over tropical forests for which other approaches show poorer performance and oftentimes a saturation effect. The height maps generated by Hy-TeC also have better ground sampling distance and better sensitivity to sparse vegetation. Over these areas, Hy-TeC showed an RMSE of 3.1 m in comparison to a reference dataset while the baseline ConvNet model had an RMSE of 4.3 m. Hy-TeC, which was used to generate a height map of Ghana using free and open access remotely sensed data with Sentinel-2 and Sentinel-1 images as predictors and GEDI height measurements as calibration data, has the potential to be used globally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Intro采纳,获得10
1秒前
SciGPT应助cat采纳,获得10
1秒前
Minkslion发布了新的文献求助10
1秒前
2秒前
酷波er应助细腻的麦片采纳,获得10
3秒前
lurenjia009完成签到,获得积分10
4秒前
4秒前
科研通AI5应助huangyi采纳,获得10
5秒前
yxy完成签到,获得积分10
5秒前
Orange应助yam001采纳,获得30
5秒前
5秒前
竹斟酒完成签到,获得积分10
6秒前
6秒前
6秒前
请叫我风吹麦浪应助Wxd0211采纳,获得10
6秒前
6秒前
6秒前
深情安青应助美女采纳,获得10
7秒前
111完成签到,获得积分10
7秒前
葛辉辉完成签到,获得积分10
8秒前
kangkang发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
SciGPT应助ye采纳,获得10
10秒前
乐乐应助自信晟睿采纳,获得10
10秒前
葛辉辉发布了新的文献求助10
10秒前
11秒前
Wxd0211完成签到,获得积分20
11秒前
nemo完成签到,获得积分10
12秒前
小橙子发布了新的文献求助10
12秒前
lxh2424发布了新的文献求助30
12秒前
万能图书馆应助YHL采纳,获得10
12秒前
请叫我风吹麦浪应助hu970采纳,获得10
12秒前
传统的慕儿完成签到,获得积分10
13秒前
aurora完成签到 ,获得积分10
13秒前
13秒前
领导范儿应助gyt采纳,获得10
15秒前
麦麦发布了新的文献求助10
15秒前
晴天完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762