已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hy-TeC: a hybrid vision transformer model for high-resolution and large-scale mapping of canopy height

遥感 激光雷达 天蓬 环境科学 技术 树冠 雷达 计算机科学 地质学 地理 地球物理学 电信 电离层 考古
作者
Ibrahim Fayad,Philippe Ciais,Martin A. Schwartz,Jean‐Pierre Wigneron,Nicolas Baghdadi,Aurélien de Truchis,Alexandre d’Aspremont,Frédéric Frappart,Sassan Saatchi,Ewan Sean,Agnes Pellissier-Tanon,Hassan S. Bazzi
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:302: 113945-113945 被引量:12
标识
DOI:10.1016/j.rse.2023.113945
摘要

Accurate and timely monitoring of forest canopy height is critical for assessing forest dynamics, biodiversity, carbon sequestration as well as forest degradation and deforestation. Recent advances in deep learning techniques, coupled with the vast amount of spaceborne remote sensing data offer an unprecedented opportunity to map canopy height at high spatial and temporal resolutions. Current techniques for wall-to-wall canopy height mapping correlate remotely sensed information from optical and radar sensors in the 2D space to the vertical structure of trees using lidar's 3D measurement abilities serving as height proxies. While studies making use of deep learning algorithms have shown promising performances for the accurate mapping of canopy height, they have limitations due to the type of architectures and loss functions employed. Moreover, mapping canopy height over tropical forests remains poorly studied, and the accurate height estimation of tall canopies is a challenge due to signal saturation from optical and radar sensors, persistent cloud cover, and sometimes limited penetration capabilities of lidar instruments. In this study, we map heights at 10 m resolution across the diverse landscape of Ghana with a new vision transformer (ViT) model, dubbed Hy-TeC, optimized concurrently with a classification (discrete) and a regression (continuous) loss function. This model achieves significantly higher accuracy than previously employed convolutional-based approaches (ConvNets) optimized with only a continuous loss function. Hy-TeC results show that our proposed discrete/continuous loss formulation significantly increases the sensitivity for very tall trees (i.e., > 35 m). Overall, Hy-TeC has significantly reduced bias (0.8 m) and higher accuracy (RMSE = 6.6 m) over tropical forests for which other approaches show poorer performance and oftentimes a saturation effect. The height maps generated by Hy-TeC also have better ground sampling distance and better sensitivity to sparse vegetation. Over these areas, Hy-TeC showed an RMSE of 3.1 m in comparison to a reference dataset while the baseline ConvNet model had an RMSE of 4.3 m. Hy-TeC, which was used to generate a height map of Ghana using free and open access remotely sensed data with Sentinel-2 and Sentinel-1 images as predictors and GEDI height measurements as calibration data, has the potential to be used globally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过怜雪完成签到,获得积分10
刚刚
1秒前
万能图书馆应助难过怜雪采纳,获得10
3秒前
搞怪的凡霜完成签到,获得积分10
4秒前
淼鑫发布了新的文献求助10
4秒前
5秒前
5秒前
qiuqiuni完成签到,获得积分10
5秒前
7秒前
hms完成签到 ,获得积分10
7秒前
蓝莓发布了新的文献求助10
7秒前
还在考虑完成签到,获得积分10
8秒前
gao发布了新的文献求助10
10秒前
李健的小迷弟应助古枂采纳,获得10
10秒前
Coconut发布了新的文献求助30
11秒前
ning发布了新的文献求助30
11秒前
12秒前
希望天下0贩的0应助xyj采纳,获得10
15秒前
17秒前
kop完成签到 ,获得积分10
17秒前
19秒前
lucy发布了新的文献求助10
19秒前
药化小硕发布了新的文献求助20
20秒前
20秒前
22秒前
优美棒球发布了新的文献求助20
22秒前
23秒前
WMT完成签到 ,获得积分10
24秒前
Lucas应助hfhkjh采纳,获得10
25秒前
22yh完成签到,获得积分10
28秒前
28秒前
睡着了发布了新的文献求助10
28秒前
34Kenny完成签到,获得积分10
30秒前
Rain发布了新的文献求助10
31秒前
淼鑫完成签到,获得积分10
31秒前
Owen应助飞飞采纳,获得10
32秒前
樱_花qxy完成签到,获得积分10
33秒前
33秒前
33秒前
踏实的傲白完成签到 ,获得积分10
34秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229344
求助须知:如何正确求助?哪些是违规求助? 2877046
关于积分的说明 8197662
捐赠科研通 2544371
什么是DOI,文献DOI怎么找? 1374357
科研通“疑难数据库(出版商)”最低求助积分说明 646946
邀请新用户注册赠送积分活动 621742