Synergistic Integration of Machine Learning with Microstructure/Composition-Designed SnO2 and WO3 Breath Sensors

卷积神经网络 人工神经网络 计算机科学 人工智能 传感器阵列 深度学习 无线传感器网络 机器学习 材料科学 计算机网络
作者
Yoonmi Nam,Ki-Beom Kim,Sang Hun Kim,Kihong Park,Myeong-Ill Lee,Jeong Won Cho,Jongtae Lim,In‐Sung Hwang,Yun Chan Kang,Jin‐Ha Hwang
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (1): 182-194 被引量:1
标识
DOI:10.1021/acssensors.3c01814
摘要

A high-performance semiconductor metal oxide gas sensing strategy is proposed for efficient sensor-based disease prediction by integrating a machine learning methodology with complementary sensor arrays composed of SnO2- and WO3-based sensors. The six sensors, including SnO2- and WO3-based sensors and neural network algorithms, were used to measure gas mixtures. The six constituent sensors were subjected to acetone and hydrogen environments to monitor the effect of diet and/or irritable bowel syndrome (IBS) under the interference of ethanol. The SnO2- and WO3-based sensors suffer from poor discrimination ability if sensors (a single sensor or multiple sensors) within the same group (SnO2- or WO3-based) are separately applied, even when deep learning is applied to enhance the sensing operation. However, hybrid integration is proven to be effective in discerning acetone from hydrogen even in a two-sensor configuration through the synergistic contribution of supervised learning, i.e., neural network approaches involving deep neural networks (DNNs) and convolutional neural networks (CNNs). DNN-based numeric data and CNN-based image data can be exploited for discriminating acetone and hydrogen, with the aim of predicting the status of an exercise-driven diet and IBS. The ramifications of the proposed hybrid sensor combinations and machine learning for the high-performance breath sensor domain are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pxingyu应助自然千山采纳,获得10
刚刚
wangayting发布了新的文献求助10
1秒前
曾开心发布了新的文献求助10
2秒前
熊熊完成签到 ,获得积分10
2秒前
2秒前
shw完成签到,获得积分10
2秒前
可爱的函函应助SMIRTGIRL采纳,获得10
3秒前
3秒前
无花果应助Ar采纳,获得10
4秒前
弄香发布了新的文献求助10
4秒前
思源应助林夕采纳,获得10
8秒前
薛变霞完成签到 ,获得积分10
8秒前
8秒前
lyh发布了新的文献求助10
8秒前
Larix完成签到 ,获得积分10
9秒前
张朝程发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
007发布了新的文献求助10
10秒前
jasar关注了科研通微信公众号
10秒前
共享精神应助柔弱小之采纳,获得10
11秒前
优雅山柏完成签到,获得积分10
14秒前
薰硝壤应助乱码采纳,获得30
14秒前
gugu发布了新的文献求助10
15秒前
顾矜应助郭达9527采纳,获得10
16秒前
16秒前
17秒前
自然千山完成签到,获得积分10
17秒前
ding应助Millennial采纳,获得10
19秒前
薰硝壤应助猪小呆采纳,获得10
19秒前
19秒前
jihui发布了新的文献求助10
20秒前
20秒前
Ar完成签到,获得积分20
21秒前
21秒前
21秒前
Inicly发布了新的文献求助30
22秒前
23秒前
曾开心完成签到,获得积分10
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141127
求助须知:如何正确求助?哪些是违规求助? 2792031
关于积分的说明 7801479
捐赠科研通 2448267
什么是DOI,文献DOI怎么找? 1302482
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226