Exploring the association between the built environment and positive sentiments of tourists in traditional villages in Fuzhou, China

开放的体验 地理 索引(排版) 中国 计算机科学 环境资源管理 社会经济学 心理学 环境科学 社会学 万维网 社会心理学 考古
作者
Zhengyan Chen,Honghui Yang,Yishan Lin,Jiahui Xie,Yuanqin Xie,Zheng Ding
出处
期刊:Ecological Informatics [Elsevier]
卷期号:80: 102465-102465 被引量:8
标识
DOI:10.1016/j.ecoinf.2024.102465
摘要

Promoting positive emotional experiences for tourists is crucial for sustaining development in rural areas. However, existing research has limited focus on the rural built environment, particularly in developing a framework to evaluate environmental sentiment on a small to medium scale with detailed indicators. This study addresses this gap by examining the impact of the rural built environment on tourists' emotions. Natural Language Processing (NLP) technologies are employed to analyze web text data and determine the average sentiment index for traditional villages in Fuzhou, China. Additionally, data on the built environment were acquired through the HRnet segmentation model and Matlab. To assess the association between environmental indicators and the sentiment index, we used eXtreme Gradient Boosting (XGBoost), the SHapley Additive exPlanation (SHAP) model, and ArcMap software. The study demonstrated that (1) the spatial distribution of the average sentiment index was significant. Houfu Village (9.91), Qianhu Village (9.88), and Ximen Village (9.75) had the highest scores, while Doukui Village (−0.85), Jiji Village (0.2), and Qiaodong Village (0.55) had the lowest. (2) The indicators that have the most significant impact on sentiment are Openness, Greenness, and Color Complexity, with a contribution value above 0.7—followed by Enclosure, Visual Entropy, and Ground Exposure, with a contribution between 0.5 and 0.7. Furthermore, analyzing the interaction mechanism of the indicators showed a non-linear relationship. The environmental characteristics associated with high emotional index scores are openness in the range of 0.2 to 0.5, greenness in the range of 0.4 to 0.6, and color complexity in the range of 0.3 to 0.5. This study provides observations pertinent to the sustainable development of traditional village environments. The findings contribute to an understanding of how these environmental elements might be effectively designed to improve tourists' sentiment in rural settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tmpstlml发布了新的文献求助10
1秒前
张红梨完成签到,获得积分10
1秒前
迷迷完成签到,获得积分20
2秒前
2秒前
科研通AI2S应助chen采纳,获得10
3秒前
穿山甲坐飞机完成签到 ,获得积分10
3秒前
4秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
4秒前
科研通AI5应助经年采纳,获得10
4秒前
4秒前
勤劳晓亦应助木头人采纳,获得10
5秒前
科研通AI5应助想瘦的海豹采纳,获得10
5秒前
6秒前
科研通AI5应助adazbd采纳,获得10
6秒前
bkagyin应助皮皮桂采纳,获得10
6秒前
7秒前
重要的哈密瓜完成签到 ,获得积分10
7秒前
会飞的云完成签到 ,获得积分10
8秒前
8秒前
毕不了业的凡阿哥完成签到,获得积分10
8秒前
野子发布了新的文献求助10
8秒前
berry完成签到,获得积分10
9秒前
10秒前
LUNWENREQUEST发布了新的文献求助10
10秒前
大模型应助匹诺曹采纳,获得10
11秒前
ding应助过时的又槐采纳,获得10
12秒前
15秒前
鄙视注册完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
落寞溪灵完成签到 ,获得积分10
19秒前
玖玖柒idol完成签到,获得积分10
19秒前
曌虞完成签到,获得积分10
19秒前
20秒前
啥,这都是啥完成签到,获得积分10
20秒前
皮皮桂发布了新的文献求助10
21秒前
22秒前
大大发布了新的文献求助10
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808