医学
生物标志物
临床试验
2型糖尿病
胰岛素原
糖尿病
移植
β细胞
C肽
疾病
1型糖尿病
内科学
血糖性
肿瘤科
胰岛素
小岛
内分泌学
生物
生物化学
作者
Esther Latres,Carla J. Greenbaum,Maria L. Oyaski,Colin Dayan,Helen M. Colhoun,John M. Lachin,Jay S. Skyler,Michael R. Rickels,Simi Ahmed,Sanjoy Dutta,Kevan C. Herold,Marjana Marinac
出处
期刊:Diabetes
[American Diabetes Association]
日期:2024-02-13
卷期号:73 (6): 823-833
被引量:7
摘要
Type 1 diabetes is a chronic autoimmune disease in which destruction of pancreatic β-cells causes life-threatening metabolic dysregulation. Numerous approaches are envisioned for new therapies, but limitations of current clinical outcome measures are significant disincentives to development efforts. C-peptide, a direct byproduct of proinsulin processing, is a quantitative biomarker of β-cell function that is not cleared by the liver and can be measured in the peripheral blood. Studies of quantitative measures of β-cell function have established a predictive relationship between stimulated C-peptide as a measure of β-cell function and clinical benefits. C-peptide levels at diagnosis are often high enough to afford glycemic control benefits associated with protection from end-organ complications of diabetes, and even lower levels offer protection from severe hypoglycemia in type 1 diabetes, as observed in large prospective cohort studies and interventional trials of islet transplantation. These observations support consideration of C-peptide not just as a biomarker of β-cell function but also as a specific, sensitive, feasible, and clinically meaningful outcome defining β-cell preservation or restoration for clinical trials of disease-modifying therapies. Regulatory acceptance of C-peptide as a validated surrogate for demonstration of efficacy would greatly facilitate development of disease-modifying therapies for type 1 diabetes. Article Highlights
科研通智能强力驱动
Strongly Powered by AbleSci AI