Microstructure and properties of Ni-Ti based gradient laser cladding layer of Ti6Al4V alloy by laser powder bed fusion

材料科学 微观结构 钛合金 图层(电子) 包层(金属加工) 复合材料 合金 无定形固体 钛镍合金 冶金 融合 形状记忆合金 结晶学 语言学 化学 哲学
作者
Yueyang Liu,Yang Yang,Chao Chen
出处
期刊:Additive manufacturing [Elsevier]
卷期号:79: 103906-103906 被引量:11
标识
DOI:10.1016/j.addma.2023.103906
摘要

An economical gradient layer was successfully prepared on Ti6Al4V alloy produced by laser powder bed fusion (L-PBF) using only composition design, gravity segregation, and laser cladding of micrometer-sized Ni powder, nanoscale SiC and Y2O3 powders. The microstructure of the layer was systematically studied to analyze the reasons for its improved wear and corrosion resistance. The results indicated that the cladding layer comprised top, middle, lower, and bottom layers. The main phases in top layer were Ti2Ni and β-Ti. Whereas the middle layer is composed of two regions, one with a similar structure to the top layer, and the other is the nickel-enriched area denoted as NEAm where the main phases were Ti2Ni, TiNi, and amorphous. The main phase of the lower layer was TiNi. Owing to the close distance between the bottom layer and the substrate, there was a significant increase of Ti in the bottom layer, and so the bottom layer and the top layer contained the same main phases. The soft phase of TiNi in lower layer would prevent the propagation of cracks that may occur in the top layer. The solidification and formation process of the gradient structure of the cladding layer was analyzed with Scheil model, and the simulation results were consistent with the experimental results. A nanocomposite system consisting of Ti3Si, α-Ti, and β-Ti was found for the first time in this study. The relationship between Ti3Si and α-Ti was coherent, and the relationship between α-Ti and β-Ti satisfied the Burgers orientation relationship. The mechanism of the nanocomposite system generation was that Si was enriched at the grain boundaries after the formation of Ti2Ni, where Ti and Si combined to form Ti3Si, and then Ti3Si was used as nucleating particles to form β-Ti/α-Ti. The α-Ti and β-Ti in the fusion line area at the bottom layer also satisfied the Burgers coherent relationship, indicating excellent bonding strength between cladding layer and substrate. A large number of solute atoms in the solid solution, pinning of second-phase particles, and the amorphous were the fundamental reasons for the substantial improvement in hardness and wear resistance. A small amount of Ni in the top layer increased the polarization of the cathodic reaction, keeping the corrosion current low. In addition, numerous dispersed fine phases in the top layer increased the resistance of charge transfer at the phase interfaces, which was the fundamental reason for the improved corrosion resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jhlz5879完成签到,获得积分10
刚刚
百宝发布了新的文献求助10
刚刚
Ye发布了新的文献求助10
刚刚
lalala应助搞怪网络采纳,获得20
1秒前
FashionBoy应助渝州人采纳,获得10
1秒前
1秒前
2秒前
2秒前
科研通AI5应助xy采纳,获得10
2秒前
曼冬发布了新的文献求助10
2秒前
上官若男应助sjxx采纳,获得10
2秒前
3秒前
守墓人完成签到 ,获得积分10
3秒前
榴莲完成签到,获得积分10
3秒前
对照完成签到 ,获得积分10
3秒前
4秒前
4秒前
初闻完成签到,获得积分10
5秒前
惠惠发布了新的文献求助10
5秒前
慕青应助a1oft采纳,获得10
6秒前
叶十七完成签到,获得积分10
6秒前
汉堡包应助宇_采纳,获得10
6秒前
SciGPT应助H71000A采纳,获得10
6秒前
侦察兵发布了新的文献求助10
7秒前
自然乐松关注了科研通微信公众号
7秒前
zqfxc完成签到,获得积分10
7秒前
sumeiling完成签到,获得积分20
7秒前
朴素的鸡完成签到,获得积分20
8秒前
大七发布了新的文献求助10
8秒前
zzzq完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
请叫我风吹麦浪应助卡卡采纳,获得10
9秒前
传奇3应助起司嗯采纳,获得10
10秒前
remimazolam发布了新的文献求助10
11秒前
在水一方应助悦耳寒松采纳,获得10
11秒前
满座完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794