Artificial intelligence applied to magnetic resonance imaging reliably detects the presence, but not the location, of meniscus tears: a systematic review and meta-analysis

医学 荟萃分析 弯月面 眼泪 磁共振成像 系统回顾 神经组阅片室 置信区间 梅德林 放射科 人工智能 外科 内科学 计算机科学 神经学 政治学 法学 物理 入射(几何) 精神科 光学
作者
Yi Zhao,Andrew Coppola,Urvi Karamchandani,Dimitri Amiras,Chinmay Gupte
出处
期刊:European Radiology [Springer Science+Business Media]
被引量:2
标识
DOI:10.1007/s00330-024-10625-7
摘要

Abstract Objectives To review and compare the accuracy of convolutional neural networks (CNN) for the diagnosis of meniscal tears in the current literature and analyze the decision-making processes utilized by these CNN algorithms. Materials and methods PubMed, MEDLINE, EMBASE, and Cochrane databases up to December 2022 were searched in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement. Risk of analysis was used for all identified articles. Predictive performance values, including sensitivity and specificity, were extracted for quantitative analysis. The meta-analysis was divided between AI prediction models identifying the presence of meniscus tears and the location of meniscus tears. Results Eleven articles were included in the final review, with a total of 13,467 patients and 57,551 images. Heterogeneity was statistically significantly large for the sensitivity of the tear identification analysis ( I 2 = 79%). A higher level of accuracy was observed in identifying the presence of a meniscal tear over locating tears in specific regions of the meniscus (AUC, 0.939 vs 0.905). Pooled sensitivity and specificity were 0.87 (95% confidence interval (CI) 0.80–0.91) and 0.89 (95% CI 0.83–0.93) for meniscus tear identification and 0.88 (95% CI 0.82–0.91) and 0.84 (95% CI 0.81–0.85) for locating the tears. Conclusions AI prediction models achieved favorable performance in the diagnosis, but not location, of meniscus tears. Further studies on the clinical utilities of deep learning should include standardized reporting, external validation, and full reports of the predictive performances of these models, with a view to localizing tears more accurately. Clinical relevance statement Meniscus tears are hard to diagnose in the knee magnetic resonance images. AI prediction models may play an important role in improving the diagnostic accuracy of clinicians and radiologists. Key Points • Artificial intelligence (AI) provides great potential in improving the diagnosis of meniscus tears. • The pooled diagnostic performance for artificial intelligence (AI) in identifying meniscus tears was better (sensitivity 87%, specificity 89%) than locating the tears (sensitivity 88%, specificity 84%). • AI is good at confirming the diagnosis of meniscus tears, but future work is required to guide the management of the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯的冬灵完成签到 ,获得积分10
1秒前
3秒前
4秒前
肥猫发布了新的文献求助10
4秒前
4秒前
可爱的函函应助过氧化氢采纳,获得30
7秒前
7秒前
锦鲤完成签到 ,获得积分10
8秒前
任性的白玉完成签到 ,获得积分10
8秒前
youwenjing11发布了新的文献求助10
9秒前
山谷完成签到 ,获得积分10
9秒前
钱宇成发布了新的文献求助10
10秒前
科研通AI2S应助感动黄豆采纳,获得10
14秒前
18秒前
19秒前
22秒前
Fengliguantou发布了新的文献求助10
22秒前
猪猪hero发布了新的文献求助10
24秒前
Winner发布了新的文献求助10
26秒前
隐形曼青应助科研通管家采纳,获得10
26秒前
领导范儿应助科研通管家采纳,获得10
26秒前
Lucas应助科研通管家采纳,获得30
27秒前
27秒前
圆锥香蕉应助科研通管家采纳,获得20
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
科目三应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
852应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
情怀应助科研通管家采纳,获得10
28秒前
28秒前
感动黄豆发布了新的文献求助10
28秒前
31秒前
搞怪冷风完成签到,获得积分10
32秒前
lucky完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105