Artificial intelligence applied to magnetic resonance imaging reliably detects the presence, but not the location, of meniscus tears: a systematic review and meta-analysis

医学 荟萃分析 弯月面 眼泪 磁共振成像 系统回顾 神经组阅片室 置信区间 梅德林 放射科 人工智能 外科 内科学 计算机科学 神经学 政治学 法学 物理 入射(几何) 精神科 光学
作者
Yi Zhao,Andrew Coppola,Urvi Karamchandani,Dimitri Amiras,Chinmay Gupte
出处
期刊:European Radiology [Springer Science+Business Media]
被引量:2
标识
DOI:10.1007/s00330-024-10625-7
摘要

Abstract Objectives To review and compare the accuracy of convolutional neural networks (CNN) for the diagnosis of meniscal tears in the current literature and analyze the decision-making processes utilized by these CNN algorithms. Materials and methods PubMed, MEDLINE, EMBASE, and Cochrane databases up to December 2022 were searched in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement. Risk of analysis was used for all identified articles. Predictive performance values, including sensitivity and specificity, were extracted for quantitative analysis. The meta-analysis was divided between AI prediction models identifying the presence of meniscus tears and the location of meniscus tears. Results Eleven articles were included in the final review, with a total of 13,467 patients and 57,551 images. Heterogeneity was statistically significantly large for the sensitivity of the tear identification analysis ( I 2 = 79%). A higher level of accuracy was observed in identifying the presence of a meniscal tear over locating tears in specific regions of the meniscus (AUC, 0.939 vs 0.905). Pooled sensitivity and specificity were 0.87 (95% confidence interval (CI) 0.80–0.91) and 0.89 (95% CI 0.83–0.93) for meniscus tear identification and 0.88 (95% CI 0.82–0.91) and 0.84 (95% CI 0.81–0.85) for locating the tears. Conclusions AI prediction models achieved favorable performance in the diagnosis, but not location, of meniscus tears. Further studies on the clinical utilities of deep learning should include standardized reporting, external validation, and full reports of the predictive performances of these models, with a view to localizing tears more accurately. Clinical relevance statement Meniscus tears are hard to diagnose in the knee magnetic resonance images. AI prediction models may play an important role in improving the diagnostic accuracy of clinicians and radiologists. Key Points • Artificial intelligence (AI) provides great potential in improving the diagnosis of meniscus tears. • The pooled diagnostic performance for artificial intelligence (AI) in identifying meniscus tears was better (sensitivity 87%, specificity 89%) than locating the tears (sensitivity 88%, specificity 84%). • AI is good at confirming the diagnosis of meniscus tears, but future work is required to guide the management of the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
昏昏完成签到 ,获得积分10
刚刚
不过尔尔完成签到 ,获得积分10
1秒前
刘宏完成签到,获得积分10
2秒前
可以完成签到,获得积分10
2秒前
3秒前
坚强枫完成签到,获得积分10
4秒前
默默的巧荷完成签到,获得积分10
5秒前
一叶知秋完成签到,获得积分10
6秒前
小杰瑞完成签到,获得积分20
6秒前
希望天下0贩的0应助可以采纳,获得10
6秒前
白色梨花发布了新的文献求助10
6秒前
7秒前
包容柜子发布了新的文献求助10
7秒前
fiell完成签到,获得积分10
8秒前
眼睛大的擎苍给眼睛大的擎苍的求助进行了留言
8秒前
呆萌滑板完成签到 ,获得积分10
9秒前
9秒前
瑶瑶完成签到,获得积分10
10秒前
小猪找库里完成签到,获得积分10
11秒前
zhuzhen007完成签到 ,获得积分10
12秒前
淡定的秀发完成签到,获得积分10
12秒前
xuan完成签到,获得积分10
14秒前
龙华之士发布了新的文献求助10
14秒前
mkb发布了新的文献求助10
14秒前
sl发布了新的文献求助10
15秒前
隐形尔蝶发布了新的文献求助10
16秒前
17秒前
17秒前
仙林AK47完成签到,获得积分10
17秒前
无花果应助包容柜子采纳,获得10
17秒前
chen完成签到,获得积分10
18秒前
iNk应助河丫采纳,获得20
20秒前
小马甲应助清浅采纳,获得10
21秒前
清爽笑翠完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
25秒前
早岁完成签到,获得积分10
25秒前
mkb关闭了mkb文献求助
25秒前
隐形尔蝶完成签到,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048