Artificial intelligence applied to magnetic resonance imaging reliably detects the presence, but not the location, of meniscus tears: a systematic review and meta-analysis

医学 荟萃分析 弯月面 眼泪 磁共振成像 系统回顾 神经组阅片室 置信区间 梅德林 放射科 人工智能 外科 内科学 计算机科学 神经学 政治学 法学 物理 入射(几何) 精神科 光学
作者
Yi Zhao,Andrew Coppola,Urvi Karamchandani,Dimitri Amiras,Chinmay Gupte
出处
期刊:European Radiology [Springer Nature]
被引量:2
标识
DOI:10.1007/s00330-024-10625-7
摘要

Abstract Objectives To review and compare the accuracy of convolutional neural networks (CNN) for the diagnosis of meniscal tears in the current literature and analyze the decision-making processes utilized by these CNN algorithms. Materials and methods PubMed, MEDLINE, EMBASE, and Cochrane databases up to December 2022 were searched in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement. Risk of analysis was used for all identified articles. Predictive performance values, including sensitivity and specificity, were extracted for quantitative analysis. The meta-analysis was divided between AI prediction models identifying the presence of meniscus tears and the location of meniscus tears. Results Eleven articles were included in the final review, with a total of 13,467 patients and 57,551 images. Heterogeneity was statistically significantly large for the sensitivity of the tear identification analysis ( I 2 = 79%). A higher level of accuracy was observed in identifying the presence of a meniscal tear over locating tears in specific regions of the meniscus (AUC, 0.939 vs 0.905). Pooled sensitivity and specificity were 0.87 (95% confidence interval (CI) 0.80–0.91) and 0.89 (95% CI 0.83–0.93) for meniscus tear identification and 0.88 (95% CI 0.82–0.91) and 0.84 (95% CI 0.81–0.85) for locating the tears. Conclusions AI prediction models achieved favorable performance in the diagnosis, but not location, of meniscus tears. Further studies on the clinical utilities of deep learning should include standardized reporting, external validation, and full reports of the predictive performances of these models, with a view to localizing tears more accurately. Clinical relevance statement Meniscus tears are hard to diagnose in the knee magnetic resonance images. AI prediction models may play an important role in improving the diagnostic accuracy of clinicians and radiologists. Key Points • Artificial intelligence (AI) provides great potential in improving the diagnosis of meniscus tears. • The pooled diagnostic performance for artificial intelligence (AI) in identifying meniscus tears was better (sensitivity 87%, specificity 89%) than locating the tears (sensitivity 88%, specificity 84%). • AI is good at confirming the diagnosis of meniscus tears, but future work is required to guide the management of the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
max完成签到 ,获得积分10
2秒前
好地方发布了新的文献求助10
6秒前
8秒前
9秒前
11秒前
12秒前
xiaofei666完成签到,获得积分10
12秒前
14秒前
mm发布了新的文献求助10
14秒前
wiese完成签到,获得积分10
17秒前
19秒前
NancyDee完成签到,获得积分10
19秒前
genomed完成签到,获得积分0
19秒前
21秒前
wiese发布了新的文献求助10
21秒前
zyf完成签到,获得积分10
22秒前
23秒前
勤恳的雪卉完成签到,获得积分10
23秒前
无限尔容发布了新的文献求助20
24秒前
大力的无声完成签到,获得积分10
25秒前
关我屁事完成签到 ,获得积分10
27秒前
mm完成签到,获得积分10
27秒前
华仔应助大力的无声采纳,获得10
28秒前
大神完成签到,获得积分10
28秒前
11完成签到,获得积分10
32秒前
李健应助冷静的夏槐采纳,获得10
34秒前
无限尔容完成签到,获得积分10
36秒前
linn完成签到,获得积分20
37秒前
NexusExplorer应助冰雪物语采纳,获得10
38秒前
希法完成签到,获得积分10
38秒前
科研通AI2S应助fafa采纳,获得10
40秒前
linn发布了新的文献求助10
42秒前
wushuimei完成签到 ,获得积分10
44秒前
44秒前
44秒前
星辰大海应助陈陈采纳,获得10
44秒前
在水一方应助郝宝真采纳,获得10
45秒前
完美世界应助康康采纳,获得10
45秒前
46秒前
memory发布了新的文献求助10
48秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162907
求助须知:如何正确求助?哪些是违规求助? 2813960
关于积分的说明 7902455
捐赠科研通 2473553
什么是DOI,文献DOI怎么找? 1316888
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187