Unsupervised damage assessment under varying ambient temperature based on an adjusted artificial neural network and new multivariate covariance-based distances

多元统计 协方差 人工神经网络 人工智能 多元分析 计算机科学 机器学习 模式识别(心理学) 统计 数学
作者
Ali Nikdel,Hashem Shariatmadar
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:1
标识
DOI:10.1177/14759217231225402
摘要

Temperature variability is one of the critical environmental conditions that causes confusing changes in structural properties and dynamic responses of bridges similar to damage. In this case, false alarms and mis-detection are among the major errors in health monitoring of such civil structures. High damage detectability is another significant challenge in bridge health monitoring. To deal with these issues, this article proposes an unsupervised damage assessment technique comprising two steps of data normalization and novelty detection. For the first step, an adjusted artificial neural network is considered to remove the effects of temperature variability from dynamic features (modal frequencies). This process is carried out by an auto-associative neural network by adjusting its hidden layer neurons through a new hyperparameter selection algorithm. Using normalized features obtained from the first step, this article proposes three multivariate covariance-based distances called linear dissimilarity analysis, multivariate Kullback–Leibler divergence, and multivariate Bregman distance to compute damage indices or novelty scores for damage assessment. The fundamental principles of these distances lie in three aspects: dividing the normalized features into segments, estimating the covariances of segmented feature sets, and incorporating the estimated covariances into the proposed distance measures. The major contributions of this article include proposing three non-parametric distance measures and developing an unsupervised data normalization framework via a new hyperparameter tuning algorithm for adjusting an artificial neural network. A concrete box-girder bridge is considered to verify the proposed approach, along with several comparative studies. Results show that the method presented here can mitigate severe temperature variability and increase damage detectability with superiority over some traditional and state-of-the-art damage assessment techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ttttt发布了新的文献求助10
刚刚
1秒前
flsqw发布了新的文献求助10
1秒前
香蕉觅云应助KEYANKEYAN采纳,获得50
2秒前
2秒前
荔枝完成签到,获得积分10
3秒前
平常诗翠发布了新的文献求助10
3秒前
外向梨愁完成签到,获得积分10
3秒前
没出门应助霸气的元彤采纳,获得10
3秒前
3秒前
3秒前
4秒前
zty568发布了新的文献求助10
5秒前
6秒前
6秒前
2323142578发布了新的文献求助10
6秒前
GHL发布了新的文献求助10
6秒前
田田田发布了新的文献求助10
7秒前
聂学雨发布了新的文献求助10
8秒前
8秒前
共享精神应助赵哥采纳,获得10
9秒前
无花果应助壮观丹珍采纳,获得10
9秒前
222发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
mbf发布了新的文献求助10
10秒前
阿咧哒完成签到,获得积分10
11秒前
是滴是滴发布了新的文献求助10
12秒前
Xenia应助Diudu采纳,获得10
12秒前
在水一方完成签到 ,获得积分10
12秒前
Andrew02应助Mango采纳,获得10
13秒前
coral完成签到,获得积分10
13秒前
xxy991007发布了新的文献求助10
13秒前
小核桃发布了新的文献求助10
14秒前
14秒前
15秒前
宝安发布了新的文献求助10
15秒前
赫山柳发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152976
求助须知:如何正确求助?哪些是违规求助? 2804157
关于积分的说明 7857469
捐赠科研通 2461911
什么是DOI,文献DOI怎么找? 1310570
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601788