Heart disease prediction: Improved quantum convolutional neural network and enhanced features

计算机科学 卷积神经网络 人工智能 人工神经网络 量子 模式识别(心理学) 机器学习 物理 量子力学
作者
P. Padmakumari,Shanthi Ponnusamy,Vidivelli Soundararajan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123534-123534 被引量:11
标识
DOI:10.1016/j.eswa.2024.123534
摘要

Currently, heart disease is the leading cause of death in world. Since cardiac sickness requires knowledge and detailed information, it is challenging to anticipate. Healthcare systems have been using Internet of Things (IoT) technologies for gathering sensor data for diagnosing the heart disease and prognosis in recent years. Researchers have focused a lot of emphasis on diagnosing heart disease, although the outcomes are not always reliable. This article proposes the automated heart disease prediction model with three main stages, including preprocessing, feature extraction, and prediction. The input data undergoes an improved Z-score normalization as the preprocessing step. The appropriate features needed to train the prediction model are retrieved from the preprocessed data during feature extraction. The features extracted include improved entropy, statistical features, and information gain features. Depends on the features extracted, prediction is determined by the Improved Quantum CNN (IQCNN). The results of the IQCNN are compared to earlier systems for a various metrics. The proposed IQCNN model has achieved better accuracy of 0.91 at a 70% learning rate when evaluated over conventional methods like Bi-LSTM, CNN, QCNN, DNN, NN, RNN, MDCNN and E-KNN for better performance in the prediction of heart disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九月发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
123456完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
long发布了新的文献求助10
4秒前
紧张的幻柏完成签到,获得积分10
4秒前
5秒前
求助人员发布了新的文献求助10
6秒前
苏世完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
8秒前
初识完成签到,获得积分10
8秒前
8秒前
男男的蓝完成签到,获得积分10
8秒前
9秒前
马剑完成签到,获得积分10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
陈诗雨完成签到,获得积分10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771006
求助须知:如何正确求助?哪些是违规求助? 5588895
关于积分的说明 15426243
捐赠科研通 4904384
什么是DOI,文献DOI怎么找? 2638696
邀请新用户注册赠送积分活动 1586530
关于科研通互助平台的介绍 1541682