Heart disease prediction: Improved quantum convolutional neural network and enhanced features

计算机科学 卷积神经网络 人工智能 人工神经网络 量子 模式识别(心理学) 机器学习 物理 量子力学
作者
P. Padmakumari,Shanthi Ponnusamy,Vidivelli Soundararajan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123534-123534 被引量:11
标识
DOI:10.1016/j.eswa.2024.123534
摘要

Currently, heart disease is the leading cause of death in world. Since cardiac sickness requires knowledge and detailed information, it is challenging to anticipate. Healthcare systems have been using Internet of Things (IoT) technologies for gathering sensor data for diagnosing the heart disease and prognosis in recent years. Researchers have focused a lot of emphasis on diagnosing heart disease, although the outcomes are not always reliable. This article proposes the automated heart disease prediction model with three main stages, including preprocessing, feature extraction, and prediction. The input data undergoes an improved Z-score normalization as the preprocessing step. The appropriate features needed to train the prediction model are retrieved from the preprocessed data during feature extraction. The features extracted include improved entropy, statistical features, and information gain features. Depends on the features extracted, prediction is determined by the Improved Quantum CNN (IQCNN). The results of the IQCNN are compared to earlier systems for a various metrics. The proposed IQCNN model has achieved better accuracy of 0.91 at a 70% learning rate when evaluated over conventional methods like Bi-LSTM, CNN, QCNN, DNN, NN, RNN, MDCNN and E-KNN for better performance in the prediction of heart disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏完成签到,获得积分10
刚刚
1秒前
2秒前
丘比特应助mm采纳,获得10
3秒前
共享精神应助不要加糖采纳,获得10
3秒前
Autism完成签到,获得积分10
3秒前
3秒前
sunlanglang发布了新的文献求助10
3秒前
乐乐应助心灵美复天采纳,获得10
4秒前
4秒前
4秒前
YamDaamCaa应助xlxl采纳,获得30
6秒前
6秒前
xiaowang发布了新的文献求助10
8秒前
Talha发布了新的文献求助10
9秒前
佘楽发布了新的文献求助10
9秒前
邱邱发布了新的文献求助10
10秒前
10秒前
岁岁平安发布了新的文献求助10
11秒前
雪白的听寒完成签到 ,获得积分10
11秒前
领导范儿应助sunlanglang采纳,获得10
12秒前
彭佳乐发布了新的文献求助10
13秒前
饼藏发布了新的文献求助10
15秒前
Ava应助加油哟采纳,获得10
16秒前
泯工发布了新的文献求助10
17秒前
17秒前
bkagyin应助邱邱采纳,获得10
18秒前
xiaowang完成签到,获得积分10
19秒前
犹豫的寄文完成签到,获得积分20
19秒前
20秒前
Liufgui应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得10
22秒前
22秒前
Rondab应助科研通管家采纳,获得30
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
田様应助科研通管家采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578