Heart disease prediction: Improved quantum convolutional neural network and enhanced features

计算机科学 卷积神经网络 人工智能 人工神经网络 量子 模式识别(心理学) 机器学习 物理 量子力学
作者
P. Padmakumari,Shanthi Ponnusamy,Vidivelli Soundararajan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123534-123534 被引量:11
标识
DOI:10.1016/j.eswa.2024.123534
摘要

Currently, heart disease is the leading cause of death in world. Since cardiac sickness requires knowledge and detailed information, it is challenging to anticipate. Healthcare systems have been using Internet of Things (IoT) technologies for gathering sensor data for diagnosing the heart disease and prognosis in recent years. Researchers have focused a lot of emphasis on diagnosing heart disease, although the outcomes are not always reliable. This article proposes the automated heart disease prediction model with three main stages, including preprocessing, feature extraction, and prediction. The input data undergoes an improved Z-score normalization as the preprocessing step. The appropriate features needed to train the prediction model are retrieved from the preprocessed data during feature extraction. The features extracted include improved entropy, statistical features, and information gain features. Depends on the features extracted, prediction is determined by the Improved Quantum CNN (IQCNN). The results of the IQCNN are compared to earlier systems for a various metrics. The proposed IQCNN model has achieved better accuracy of 0.91 at a 70% learning rate when evaluated over conventional methods like Bi-LSTM, CNN, QCNN, DNN, NN, RNN, MDCNN and E-KNN for better performance in the prediction of heart disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助伽娜采纳,获得10
刚刚
彭于晏应助LIUS采纳,获得10
刚刚
传奇3应助xiayiyi采纳,获得10
刚刚
喜悦的无心完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
平常的仙人掌完成签到,获得积分10
1秒前
西林发布了新的文献求助10
2秒前
申左一发布了新的文献求助10
2秒前
阅读发布了新的文献求助10
2秒前
3秒前
3秒前
昵称应助ChengxinXie采纳,获得20
3秒前
4秒前
万能图书馆应助才地理采纳,获得10
4秒前
5秒前
5秒前
壮壮女士发布了新的文献求助10
5秒前
LIUS完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
梅花完成签到,获得积分10
8秒前
8秒前
十一号发布了新的文献求助10
8秒前
祝你发财完成签到,获得积分20
8秒前
万事顺意发布了新的文献求助10
9秒前
10秒前
少少发布了新的文献求助10
10秒前
文艺路人发布了新的文献求助10
10秒前
酷波er应助kkk采纳,获得10
10秒前
幽梦挽歌发布了新的文献求助10
11秒前
单身的淇发布了新的文献求助10
11秒前
sunnyfriend完成签到,获得积分10
11秒前
伽娜发布了新的文献求助10
12秒前
xiayiyi发布了新的文献求助10
12秒前
领导范儿应助Jessica采纳,获得10
12秒前
13秒前
zhangkele完成签到,获得积分10
13秒前
脑洞疼应助zcs采纳,获得30
13秒前
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559