亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Heart disease prediction: Improved quantum convolutional neural network and enhanced features

计算机科学 卷积神经网络 人工智能 人工神经网络 量子 模式识别(心理学) 机器学习 物理 量子力学
作者
P. Padmakumari,Shanthi Ponnusamy,Vidivelli Soundararajan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123534-123534 被引量:11
标识
DOI:10.1016/j.eswa.2024.123534
摘要

Currently, heart disease is the leading cause of death in world. Since cardiac sickness requires knowledge and detailed information, it is challenging to anticipate. Healthcare systems have been using Internet of Things (IoT) technologies for gathering sensor data for diagnosing the heart disease and prognosis in recent years. Researchers have focused a lot of emphasis on diagnosing heart disease, although the outcomes are not always reliable. This article proposes the automated heart disease prediction model with three main stages, including preprocessing, feature extraction, and prediction. The input data undergoes an improved Z-score normalization as the preprocessing step. The appropriate features needed to train the prediction model are retrieved from the preprocessed data during feature extraction. The features extracted include improved entropy, statistical features, and information gain features. Depends on the features extracted, prediction is determined by the Improved Quantum CNN (IQCNN). The results of the IQCNN are compared to earlier systems for a various metrics. The proposed IQCNN model has achieved better accuracy of 0.91 at a 70% learning rate when evaluated over conventional methods like Bi-LSTM, CNN, QCNN, DNN, NN, RNN, MDCNN and E-KNN for better performance in the prediction of heart disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
7秒前
我爱学习完成签到,获得积分10
11秒前
12秒前
小璐完成签到,获得积分20
13秒前
我爱学习发布了新的文献求助10
18秒前
Linda发布了新的文献求助10
19秒前
26秒前
kangwen发布了新的文献求助10
32秒前
33秒前
顾矜应助一见喜采纳,获得10
37秒前
Linda完成签到,获得积分10
54秒前
55秒前
科研通AI6.1应助lemon采纳,获得10
56秒前
57秒前
一见喜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
风吹麦田应助kangwen采纳,获得30
1分钟前
1分钟前
Lan完成签到 ,获得积分10
1分钟前
lemon完成签到,获得积分10
1分钟前
在水一方应助小璐采纳,获得10
1分钟前
lemon发布了新的文献求助10
1分钟前
充电宝应助伊祁夜明采纳,获得10
1分钟前
2分钟前
西早完成签到 ,获得积分10
2分钟前
Nichols发布了新的文献求助20
2分钟前
2分钟前
2分钟前
2分钟前
漂亮幻莲完成签到,获得积分10
2分钟前
2分钟前
2分钟前
斯文败类应助漂亮幻莲采纳,获得10
2分钟前
2分钟前
mingjiang完成签到,获得积分10
2分钟前
小璐发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731973
求助须知:如何正确求助?哪些是违规求助? 5335177
关于积分的说明 15321878
捐赠科研通 4877749
什么是DOI,文献DOI怎么找? 2620617
邀请新用户注册赠送积分活动 1569892
关于科研通互助平台的介绍 1526410