Heart disease prediction: Improved quantum convolutional neural network and enhanced features

计算机科学 卷积神经网络 人工智能 人工神经网络 量子 模式识别(心理学) 机器学习 物理 量子力学
作者
P. Padmakumari,Shanthi Ponnusamy,Vidivelli Soundararajan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123534-123534 被引量:11
标识
DOI:10.1016/j.eswa.2024.123534
摘要

Currently, heart disease is the leading cause of death in world. Since cardiac sickness requires knowledge and detailed information, it is challenging to anticipate. Healthcare systems have been using Internet of Things (IoT) technologies for gathering sensor data for diagnosing the heart disease and prognosis in recent years. Researchers have focused a lot of emphasis on diagnosing heart disease, although the outcomes are not always reliable. This article proposes the automated heart disease prediction model with three main stages, including preprocessing, feature extraction, and prediction. The input data undergoes an improved Z-score normalization as the preprocessing step. The appropriate features needed to train the prediction model are retrieved from the preprocessed data during feature extraction. The features extracted include improved entropy, statistical features, and information gain features. Depends on the features extracted, prediction is determined by the Improved Quantum CNN (IQCNN). The results of the IQCNN are compared to earlier systems for a various metrics. The proposed IQCNN model has achieved better accuracy of 0.91 at a 70% learning rate when evaluated over conventional methods like Bi-LSTM, CNN, QCNN, DNN, NN, RNN, MDCNN and E-KNN for better performance in the prediction of heart disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
April完成签到 ,获得积分10
1秒前
科研通AI6应助王成凤采纳,获得10
1秒前
情怀应助戈薇的背包采纳,获得10
1秒前
aiya发布了新的文献求助10
2秒前
小马甲应助qiqiqi采纳,获得30
2秒前
Marine_Geo完成签到 ,获得积分10
2秒前
2秒前
77发布了新的文献求助10
3秒前
alna完成签到,获得积分10
3秒前
ZYP发布了新的文献求助10
3秒前
4秒前
BareBear应助霁雨花君采纳,获得10
4秒前
221完成签到 ,获得积分10
4秒前
hhhhh发布了新的文献求助10
5秒前
5秒前
5秒前
auguste完成签到,获得积分10
5秒前
海岸发布了新的文献求助10
5秒前
我是大兴发布了新的文献求助10
6秒前
柳劲南完成签到,获得积分10
9秒前
9秒前
9秒前
Hammery完成签到,获得积分10
9秒前
9秒前
10秒前
黑粉头头发布了新的文献求助10
10秒前
紫薇发布了新的文献求助10
10秒前
11秒前
归尘发布了新的文献求助10
12秒前
寒冷猫咪发布了新的文献求助10
12秒前
不知道发布了新的文献求助10
12秒前
无花果应助浩浩采纳,获得10
12秒前
13秒前
逸风望发布了新的文献求助10
13秒前
能干吐司完成签到,获得积分20
14秒前
Gauss应助ZYP采纳,获得30
14秒前
asdfzxcv应助愉快乐瑶采纳,获得10
14秒前
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637185
求助须知:如何正确求助?哪些是违规求助? 4742945
关于积分的说明 14998249
捐赠科研通 4795434
什么是DOI,文献DOI怎么找? 2561969
邀请新用户注册赠送积分活动 1521481
关于科研通互助平台的介绍 1481513