Preoperative structural–functional coupling at the default mode network predicts surgical outcomes of temporal lobe epilepsy

癫痫 默认模式网络 颞叶 磁共振成像 癫痫外科 神经科学 接收机工作特性 医学 功能磁共振成像 磁共振弥散成像 模块化设计 人工智能 内科学 心理学 计算机科学 放射科 操作系统
作者
Chunyao Zhou,Fangfang Xie,Dongcui Wang,Xiaoting Huang,Danni Guo,Yangsa Du,Ling Xiao,Dingyang Liu,Bo Xiao,Zhiquan Yang,Li Feng
出处
期刊:Epilepsia [Wiley]
卷期号:65 (4): 1115-1127 被引量:2
标识
DOI:10.1111/epi.17921
摘要

Structural-functional coupling (SFC) has shown great promise in predicting postsurgical seizure recurrence in patients with temporal lobe epilepsy (TLE). In this study, we aimed to clarify the global alterations in SFC in TLE patients and predict their surgical outcomes using SFC features. This study analyzed presurgical diffusion and functional magnetic resonance imaging data from 71 TLE patients and 48 healthy controls (HCs). TLE patients were categorized into seizure-free (SF) and non-seizure-free (nSF) groups based on postsurgical recurrence. Individual functional connectivity (FC), structural connectivity (SC), and SFC were quantified at the regional and modular levels. The data were compared between the TLE and HC groups as well as among the TLE, SF, and nSF groups. The features of SFC, SC, and FC were categorized into three datasets: the modular SFC dataset, regional SFC dataset, and SC/FC dataset. Each dataset was independently integrated into a cross-validated machine learning model to classify surgical outcomes. Compared with HCs, the visual and subcortical modules exhibited decoupling in TLE patients (p < .05). Multiple default mode network (DMN)-related SFCs were significantly higher in the nSF group than in the SF group (p < .05). Models trained using the modular SFC dataset demonstrated the highest predictive performance. The final prediction model achieved an area under the receiver operating characteristic curve of .893 with an overall accuracy of .887. Presurgical hyper-SFC in the DMN was strongly associated with postoperative seizure recurrence. Furthermore, our results introduce a novel SFC-based machine learning model to precisely classify the surgical outcomes of TLE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzz发布了新的文献求助30
刚刚
刚刚
哄哄完成签到,获得积分10
刚刚
隐形曼青应助邓谷云采纳,获得10
刚刚
sunshine完成签到,获得积分10
1秒前
huhuhu完成签到,获得积分10
1秒前
砰砰砰砰啪!完成签到 ,获得积分10
1秒前
EmmaLei发布了新的文献求助10
1秒前
車侖发布了新的文献求助10
1秒前
1秒前
智博36发布了新的文献求助10
1秒前
Jason完成签到,获得积分10
2秒前
2秒前
缓缓矛盾体完成签到,获得积分10
3秒前
搞怪唯雪完成签到,获得积分10
3秒前
showing应助Moriarty采纳,获得50
3秒前
3秒前
fu19921016完成签到 ,获得积分10
4秒前
5秒前
5秒前
muliushang完成签到 ,获得积分10
7秒前
YJJ完成签到,获得积分10
7秒前
俭朴新之完成签到 ,获得积分10
7秒前
平淡幻天发布了新的文献求助10
7秒前
8秒前
8秒前
gao完成签到,获得积分20
8秒前
整齐白秋完成签到 ,获得积分10
9秒前
蓝胖子完成签到,获得积分10
10秒前
wanci应助小台采纳,获得10
10秒前
ruby发布了新的文献求助10
10秒前
yu完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
夏天很凉快完成签到,获得积分10
13秒前
gao发布了新的文献求助10
14秒前
Jennifer发布了新的文献求助10
14秒前
我是帅哥发布了新的文献求助10
14秒前
郭郭完成签到 ,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3658027
求助须知:如何正确求助?哪些是违规求助? 3219941
关于积分的说明 9734508
捐赠科研通 2928985
什么是DOI,文献DOI怎么找? 1603759
邀请新用户注册赠送积分活动 756736
科研通“疑难数据库(出版商)”最低求助积分说明 734090