亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rational Regulation of the Exciton Effect of Acrylonitrile-Linked Covalent Organic Framework toward Boosting Visible-Light-Driven Hydrogen Evolution

激子 光化学 光致发光 质子化 光电流 化学 结合能 材料科学 光电子学 原子物理学 有机化学 离子 物理 量子力学
作者
Xingyue Gao,Jiayu Yuan,Ping Wei,Jinfeng Dong,Lekai Chang,Zhipeng Huang,Hailong Zheng,Jiewei Liu,Jianbo Jia,Tiangang Luan,Bingpu Zhou,Hao Yu,Chao Peng
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (1): 533-546 被引量:34
标识
DOI:10.1021/acscatal.3c04509
摘要

Covalent organic frameworks (COFs) exhibit relatively inefficient exciton dissociation and free charge generation, which arise from their high exciton binding energy. Here, a series of crystalline, acrylonitrile-linked COFs are fabricated to regulate exciton effects by strategies of shortening the linker length (TP-PN COF), introducing nitrogen atoms (TP-BPyN COF), and post-protonation (TP-BPyN PCOF). The temperature-dependent photoluminescence (PL) spectra and Nyquist plots reveal a decrease in exciton binding energy and charge transfer resistance of TP-PN COF, TP-BPyN COF, and TP-BPyN PCOF. Thus, an increase in free carrier generation and an extension of carrier lifetime are achieved, as demonstrated by transient photocurrents response and time-resolved fluorescence spectra (TRFS). DFT calculation reveals that low exciton binding energy and charge transfer resistance could relate to higher planarity structure. Besides, light absorption performance was improved by shortening the linker length, while the distribution density of Pt nanoparticles as H2 evolution reaction (HER) sites was significantly improved by introducing nitrogen atoms as anchor points. As a result, the optimized TP-PN COF and TP-BPyN COF show efficient photocatalytic HER rates of 10,890 and 6457 μmol g–1 h–1, respectively, improved by 13.92 and 8.26 times compared to that without modification (TP-BPN COF, 782 μmol g–1 h–1). Through a simple post-protonation strategy, the charge is redistributed and the structural distortion is reduced. Consequently, the HER rate of TP-BPyN PCOF significantly increased to 12,276 μmol g–1 h–1. Meanwhile, the HER rate of TP-BPyN PCOF was further boosted to 15,929 and 22,438 μmol g–1 h–1 by optimizing the volume fractions of the sacrificial agent and the pH of the reaction system, respectively. This work could pave the way for developing efficient organic photocatalysts via rational regulation of the exciton effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
43秒前
马良发布了新的文献求助10
55秒前
科研通AI5应助马良采纳,获得10
1分钟前
bkagyin应助狂奔弟弟采纳,获得10
1分钟前
1分钟前
1分钟前
狂奔弟弟发布了新的文献求助10
1分钟前
kingcoffee完成签到 ,获得积分10
2分钟前
斯文败类应助平淡的雁桃采纳,获得10
2分钟前
2分钟前
马良发布了新的文献求助10
2分钟前
平淡的雁桃完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI5应助SarahG采纳,获得30
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
3分钟前
周同学发布了新的文献求助10
3分钟前
4分钟前
P_Chem完成签到,获得积分10
4分钟前
周同学发布了新的文献求助10
4分钟前
4分钟前
wenbo完成签到,获得积分0
4分钟前
Mercury完成签到,获得积分10
4分钟前
SarahG发布了新的文献求助30
4分钟前
SarahG完成签到,获得积分10
5分钟前
老石完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
周同学完成签到,获得积分20
6分钟前
千里草完成签到,获得积分10
6分钟前
周同学关注了科研通微信公众号
6分钟前
6分钟前
tenta发布了新的文献求助200
7分钟前
赘婿应助feifeiaym采纳,获得20
7分钟前
乐正亦寒完成签到 ,获得积分10
8分钟前
无情迎蕾完成签到,获得积分10
8分钟前
8分钟前
结实初柳完成签到,获得积分10
8分钟前
tenta完成签到,获得积分10
8分钟前
feifeiaym发布了新的文献求助20
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582250
求助须知:如何正确求助?哪些是违规求助? 4000012
关于积分的说明 12382029
捐赠科研通 3674909
什么是DOI,文献DOI怎么找? 2025436
邀请新用户注册赠送积分活动 1059193
科研通“疑难数据库(出版商)”最低求助积分说明 945843