Highly fluctuating short-term load forecasting based on improved secondary decomposition and optimized VMD

样本熵 计算机科学 水准点(测量) 聚类分析 熵(时间箭头) 分解 期限(时间) 算法 数学优化 时间序列 数学 人工智能 机器学习 生态学 物理 大地测量学 量子力学 生物 地理
作者
Yan Wen,Pan Su,Xinxin Li,Zibo Li
出处
期刊:Sustainable Energy, Grids and Networks [Elsevier BV]
卷期号:37: 101270-101270 被引量:1
标识
DOI:10.1016/j.segan.2023.101270
摘要

Short Term Load Forecasting (STLF) is a critical task in the power sector, enabling efficient resource allocation and grid management. However, the volatile and complex nature of short-term load series pose significant challenges to forecasting models. Traditional decomposition-prediction models are bottlenecked in that they often lack complexity-based clustering for efficiency and optimization of decomposition for optimal secondary decomposition. In this paper, we summarize the framework of the decomposition-prediction models, and propose the hybrid model to address these limitations. We propose a Sample Entropy-based hierarchical clustering method to cluster components according to complexity and improve the efficiency of secondary decomposition. Additionally, we propose the center frequency method to efficiently optimize the K parameter of VMD, ultimately achieving the optimal decomposition. In summary, firstly, to help minimize the difficulty of prediction, the load series is decomposed twice using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Optimized Variational Mode Decomposition (OVMD). Then, two separate Long Short-Term Memory (LSTM) frameworks are built to predict the components obtained from the two decompositions, thus leveraging the advantages of the previous basic framework. Finally, by superimposing the prediction results, we obtain the output of the proposed model. The Belgian power load dataset is divided into four groups by season for comparison experiments. The results reveal that our model outperforms the benchmark models, with the best average coefficient of determination and mean absolute error of 0.996 and 53.69. Additionally, the limitations of sample entropy in secondary decomposition were revealed through our findings. These insights emphasize the promising contribution that our study brings in enhancing the decomposition-prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘的寻菱完成签到 ,获得积分10
刚刚
GALAXY完成签到,获得积分10
2秒前
万能图书馆应助正直的鸿采纳,获得10
6秒前
Orange应助爱学习的曼卉采纳,获得10
6秒前
梅子酒发布了新的文献求助10
8秒前
朱恒昊关注了科研通微信公众号
9秒前
12秒前
艰苦侯完成签到 ,获得积分10
13秒前
无辜代芙完成签到 ,获得积分10
14秒前
幸福大白发布了新的文献求助10
16秒前
传奇3应助爱学习的曼卉采纳,获得10
21秒前
23秒前
无辜代芙关注了科研通微信公众号
23秒前
charlins完成签到 ,获得积分10
24秒前
24秒前
27秒前
jmx234完成签到,获得积分10
27秒前
kaka完成签到,获得积分10
29秒前
5160完成签到,获得积分10
31秒前
111发布了新的文献求助10
31秒前
成功应助房房房破防啦采纳,获得20
32秒前
www完成签到 ,获得积分10
32秒前
33秒前
XXX完成签到,获得积分10
34秒前
英俊的铭应助Zlinco采纳,获得10
34秒前
科目三应助965481采纳,获得10
35秒前
35秒前
36秒前
李y梅子发布了新的文献求助10
36秒前
恋雅颖月应助xiaokezhang采纳,获得10
37秒前
与落发布了新的文献求助10
39秒前
qiuyu发布了新的文献求助10
40秒前
汤元完成签到 ,获得积分10
41秒前
41秒前
42秒前
长度2到完成签到,获得积分10
44秒前
45秒前
Zlinco发布了新的文献求助10
49秒前
冰水混合物完成签到,获得积分10
50秒前
JamesPei应助六六三十六采纳,获得10
51秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993519
求助须知:如何正确求助?哪些是违规求助? 3534225
关于积分的说明 11265055
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806274
邀请新用户注册赠送积分活动 883084
科研通“疑难数据库(出版商)”最低求助积分说明 809710