Beyond Question Shuffling: Randomization Techniques in Programming Assessment

计算机科学 随机化 背景(考古学) 随机试验 机器学习 人工智能 随机对照试验 数学 医学 古生物学 统计 外科 生物
作者
Henry Hickman,Paul McKeown,Tim Bell
标识
DOI:10.1109/fie58773.2023.10342976
摘要

Randomization is a technique that can be used with programming assessments to discourage academic misconduct by making it unlikely for two colluding students to get the exact same questions. Previous research about randomization has shown it to be an effective tool for addressing academic misconduct, but this work often focuses on randomization broadly, with few considering specific techniques. In contrast, we consider different randomization techniques and the contexts that they are best suited to. In addition, we investigate the effectiveness of randomization techniques against emerging AI technologies. This is done by exploring randomization in the context of an online quiz system that evaluates student responses to pro-gramming challenges, specifically the CodeRunner system for the Moodle learning management system. We provide a classification of techniques, and discuss the benefits of each. This classification starts with simpler techniques, such as shuffling question order, shuffling multi-choice question options, and question pooling. We then move on to more advanced techniques, including simple substitution, altering expected output, switching logic, and steganography. We also investigate two approaches to generating randomized questions, considering the benefits and drawbacks of each. These approaches are generating the questions beforehand (pre-generation) and generating the questions when the quiz is started (on-the-fly generation). We then identify four categories of assessment based on assessment that is formative/summative, and proctored/non-proctored, then identify which randomization techniques are suited for each category. Finally, we test randomized questions against OpenAI's Codex, to see if these techniques could prevent this new opportunity for academic dishonesty. We found that there are some types of questions that Codex currently performs poorly on, such as program reasoning, and creating complex classes, but overall randomization was not effective in defeating it, with Codex scoring 79.7% on questions that were created after it was trained, and 85.3 % on questions that could have been available to it when it was trained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助研白采纳,获得10
刚刚
mianbao完成签到,获得积分10
3秒前
4秒前
安琪完成签到,获得积分10
4秒前
清秀凡霜完成签到,获得积分10
7秒前
欢喜的早晨完成签到,获得积分10
7秒前
wnx001111完成签到,获得积分10
7秒前
龙舞星完成签到,获得积分10
8秒前
LFY完成签到 ,获得积分10
9秒前
赘婿应助安琪采纳,获得10
9秒前
Kkkk完成签到,获得积分10
10秒前
悦耳的城完成签到 ,获得积分10
10秒前
宁静致远QY完成签到,获得积分10
10秒前
zzz完成签到,获得积分10
11秒前
HCLonely完成签到,获得积分0
11秒前
danna发布了新的文献求助10
11秒前
H1lb2rt完成签到 ,获得积分10
13秒前
小背包完成签到 ,获得积分10
13秒前
liberation完成签到 ,获得积分0
16秒前
量子星尘发布了新的文献求助10
16秒前
天将明完成签到 ,获得积分10
17秒前
风清扬应助科研通管家采纳,获得10
17秒前
风清扬应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得30
17秒前
月上柳梢头A1完成签到,获得积分10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
coolkid应助科研通管家采纳,获得10
18秒前
风清扬应助科研通管家采纳,获得10
18秒前
coolkid应助科研通管家采纳,获得10
18秒前
Wang完成签到,获得积分10
19秒前
墨瞳完成签到,获得积分10
20秒前
20秒前
21秒前
小羊发布了新的文献求助20
21秒前
21秒前
meimale完成签到,获得积分10
21秒前
淡然幻梦完成签到,获得积分20
22秒前
加减乘除完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960187
求助须知:如何正确求助?哪些是违规求助? 3506348
关于积分的说明 11129110
捐赠科研通 3238489
什么是DOI,文献DOI怎么找? 1789751
邀请新用户注册赠送积分活动 871889
科研通“疑难数据库(出版商)”最低求助积分说明 803095