Beyond Question Shuffling: Randomization Techniques in Programming Assessment

计算机科学 随机化 背景(考古学) 随机试验 机器学习 人工智能 随机对照试验 数学 医学 古生物学 统计 外科 生物
作者
Henry Hickman,Paul McKeown,Tim Bell
标识
DOI:10.1109/fie58773.2023.10342976
摘要

Randomization is a technique that can be used with programming assessments to discourage academic misconduct by making it unlikely for two colluding students to get the exact same questions. Previous research about randomization has shown it to be an effective tool for addressing academic misconduct, but this work often focuses on randomization broadly, with few considering specific techniques. In contrast, we consider different randomization techniques and the contexts that they are best suited to. In addition, we investigate the effectiveness of randomization techniques against emerging AI technologies. This is done by exploring randomization in the context of an online quiz system that evaluates student responses to pro-gramming challenges, specifically the CodeRunner system for the Moodle learning management system. We provide a classification of techniques, and discuss the benefits of each. This classification starts with simpler techniques, such as shuffling question order, shuffling multi-choice question options, and question pooling. We then move on to more advanced techniques, including simple substitution, altering expected output, switching logic, and steganography. We also investigate two approaches to generating randomized questions, considering the benefits and drawbacks of each. These approaches are generating the questions beforehand (pre-generation) and generating the questions when the quiz is started (on-the-fly generation). We then identify four categories of assessment based on assessment that is formative/summative, and proctored/non-proctored, then identify which randomization techniques are suited for each category. Finally, we test randomized questions against OpenAI's Codex, to see if these techniques could prevent this new opportunity for academic dishonesty. We found that there are some types of questions that Codex currently performs poorly on, such as program reasoning, and creating complex classes, but overall randomization was not effective in defeating it, with Codex scoring 79.7% on questions that were created after it was trained, and 85.3 % on questions that could have been available to it when it was trained.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靜心发布了新的文献求助10
2秒前
CRT完成签到,获得积分20
3秒前
慕青应助蓝蔚蓝采纳,获得50
3秒前
CipherSage应助13sdsf采纳,获得10
5秒前
橘子海完成签到,获得积分10
5秒前
赵坤煊完成签到 ,获得积分10
7秒前
CRT发布了新的文献求助10
7秒前
Yziii应助ACE采纳,获得10
9秒前
深情安青应助abc123采纳,获得10
9秒前
tanjianxin发布了新的文献求助50
11秒前
在水一方应助顺利毕业采纳,获得10
11秒前
唐擎汉完成签到,获得积分10
12秒前
CipherSage应助Ali采纳,获得10
12秒前
邓海霞完成签到,获得积分10
14秒前
李真完成签到 ,获得积分10
15秒前
annabel发布了新的文献求助10
15秒前
15秒前
16秒前
薰硝壤应助Cookie采纳,获得30
17秒前
17秒前
cpuwy发布了新的文献求助20
17秒前
Ava应助阳光下的味道采纳,获得10
18秒前
达拉崩吧完成签到,获得积分10
18秒前
18秒前
20秒前
21秒前
健忘傲柏发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
24秒前
24秒前
顺利毕业发布了新的文献求助10
26秒前
aaronwang完成签到,获得积分10
27秒前
okimi完成签到,获得积分10
27秒前
顺心飞雪发布了新的文献求助30
27秒前
lightstop发布了新的文献求助10
28秒前
秋秋发布了新的文献求助10
29秒前
HiQ发布了新的文献求助10
29秒前
Hello应助搞怪的服饰采纳,获得10
30秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128715
求助须知:如何正确求助?哪些是违规求助? 2779520
关于积分的说明 7743611
捐赠科研通 2434839
什么是DOI,文献DOI怎么找? 1293652
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514