清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Risk perception and resilience assessment of flood disasters based on social media big data

社会化媒体 微博 洪水(心理学) 弹性(材料科学) 大洪水 应急管理 内涝(考古学) 大数据 自然灾害 地理信息系统 计算机科学 环境资源管理 地理 环境科学 数据挖掘 地图学 万维网 政治学 气象学 物理 考古 热力学 法学 生物 湿地 生态学 心理治疗师 心理学
作者
Hongxing Li,Yuhang Han,Xin Wang,Zekun Li
出处
期刊:International journal of disaster risk reduction [Elsevier BV]
卷期号:101: 104249-104249 被引量:21
标识
DOI:10.1016/j.ijdrr.2024.104249
摘要

Social media, as an emerging source of data, has become a valuable data source for disaster prevention and management with its vast database. This study takes the "7·20" extreme rainstorm disaster in Zhengzhou as an example, extracts social media information related to the flooding disaster on social media platforms, constructs a dataset of the rainstorm and flooding disaster, and analyzes its temporal evolution and public sentiment change trends. Secondly, the K-means text clustering method based on TF-IDF was used to extract geographic location information related to waterlogging in social media data, and the resilience matrix was used as a framework to construct a resilience assessment model for urban infrastructure systems in combination with the Pressure-State-Response model. The results show that there was a sharp increase in the discussion of microblog topics about flooding information during heavy rainfall, and there was a 4-h lag between the peak time of topic discussion and the peak time of rainfall intensity. The geographical locations affected by waterlogging extracted based on microblogs can cover 87.5 % of the officially announced waterlogging points. In the resilience assessment of infrastructure systems, the transportation system and drainage system of Zhengzhou performed poorly in response to this rainstorm disaster, whereas the power system and communication system had relatively stronger resilience. This study provides an effective solution to help identify disaster events and promote disaster risk management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
7秒前
wangfaqing942完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
27秒前
Silence完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
44秒前
量子星尘发布了新的文献求助10
50秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
hihi发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
爱静静应助mt13采纳,获得100
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
紫熊发布了新的文献求助10
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
shyの煜完成签到 ,获得积分10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661079
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744081
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538