Atomically-dispersed manganese anchored on B,N co-doped carbon for the sensitive electrochemical detection of levodopa

电化学 检出限 材料科学 电催化剂 电化学气体传感器 二硫代氨基甲酸盐 兴奋剂 分析化学(期刊) 纳米技术 化学 物理化学 电极 光电子学 有机化学 冶金 色谱法
作者
Fan Wang,Junhua Li,Xiangxiong Chen,Hao Feng,Huiyang Liao,Jinlong Liu,Dong Qian,Geoffrey I. N. Waterhouse
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:481: 148607-148607 被引量:6
标识
DOI:10.1016/j.cej.2024.148607
摘要

Metal single-atom catalysts offer the dual advantages of high electrochemical activity and near 100 % metal atom utilization, leading to their potential use in low-cost electrochemical sensor development. Herein, a novel electrocatalyst comprising atomically-dispersed Mn on B,N co-doped bamboo-derived carbon (MnSAs-BN-BC) was synthesized via a facile pyrolysis procedure. A high dispersion of Mn single atoms in MnSAs-BN-BC was confirmed by aberration-corrected transmission electron microscopy and elemental mapping. The Mn loading in the MnSAs-BN-BC determined by inductively coupled plasma mass spectrometry was 255 mg kg−1. MnSAs-BN-BC displayed outstanding electrocatalytic performance for levodopa (LD) oxidation, allowing a robust electrochemical sensing platform for LD detection to be established. The MnSAs-BN-BC/GCE sensing platform offered a wide LD detection range (concentrations from 2 to 683 µM) and a very low limit of detection (LOD) of 0.45 µM, outperforming almost all electrochemical sensors reported to date for LD sensing. The MnSAs-BN-BC/GCE platform also featured outstanding repeatability, reproducibility, selectivity, and stability. The as-developed sensing platform was successfully applied to LD quantification in commercial tablets with satisfactory recoveries (85.2–102.4 %), with the analytical precision of method validated against a traditional UV–vis spectrophotometry method. Density functional theory (DFT) calculations showed that Mn single atom sites lowered the reaction energy barrier for LD oxidation, with the favorable d-band center position of Mn single atom sites in MnSAs-BN-BC contributing to the enhanced LD sensing performance. This work encourages the use of single-atom metal catalysts in design of high-performance electrochemical sensors for the rapid detection of LD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
侦察兵发布了新的文献求助10
1秒前
自然乐松关注了科研通微信公众号
1秒前
zqfxc完成签到,获得积分10
1秒前
sumeiling完成签到,获得积分20
1秒前
朴素的鸡完成签到,获得积分20
2秒前
大七发布了新的文献求助10
2秒前
zzzq完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
请叫我风吹麦浪应助卡卡采纳,获得10
3秒前
传奇3应助起司嗯采纳,获得10
4秒前
remimazolam发布了新的文献求助10
5秒前
在水一方应助悦耳寒松采纳,获得10
5秒前
满座完成签到,获得积分10
5秒前
科研通AI2S应助coffee采纳,获得10
5秒前
6秒前
雪山飞龙发布了新的文献求助30
6秒前
科研通AI5应助phd采纳,获得10
7秒前
善学以致用应助京阿尼采纳,获得10
7秒前
Sylvia完成签到,获得积分10
7秒前
朴素的鸡发布了新的文献求助10
7秒前
SCI发布了新的文献求助10
7秒前
凹凸曼打小傻蛋完成签到 ,获得积分10
8秒前
Enoch完成签到,获得积分10
8秒前
Sara完成签到,获得积分10
8秒前
8秒前
zhuzhu发布了新的文献求助20
8秒前
YUZU发布了新的文献求助10
9秒前
9秒前
10秒前
shirleeyeahe完成签到,获得积分10
11秒前
11秒前
特特雷珀萨努完成签到 ,获得积分10
11秒前
京阿尼完成签到,获得积分10
11秒前
风雨发布了新的文献求助10
11秒前
orixero应助今非采纳,获得10
11秒前
平常的G完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794