Efficient Path Planning for UAVs to Recognize Chimneys With Excessive Exhaust Emissions

计算机科学 运动规划 路径(计算) 风暴 环境科学 气象学 计算机网络 人工智能 物理 机器人
作者
You‐Chiun Wang,C.S. Chen
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (10): 18580-18592
标识
DOI:10.1109/jiot.2024.3363139
摘要

The severity of air pollution has prompted increased attention to air pollution monitoring. This paper uses unmanned aerial vehicles (UAVs) to discover chimneys with excessive exhaust emissions (called 3E-chimneys) in an industrial area. An efficient path-planning framework is proposed to find the flight path of a UAV for checking out chimneys and determine sampling points (SPs) to collect data. The framework builds the shortest path to visit chimneys. Four schemes are designed to select SPs around each chimney. The dual-location sampling (DLS) scheme chooses two SPs for each chimney according to its height. The upward spiral sampling (USS) scheme lets the UAV spiral upward at each chimney to gather data. In the inverted-U sampling (IUS) scheme, the UAV flies up to visit downwind SPs and then flies down to pass upwind SPs. The asynchronous isometric sampling (AIS) scheme picks an upwind SP and multiple downwind SPs. On doing the monitoring task, the UAV checks if some chimneys are skippable (i.e., not 3E-chimneys) using the industrial source complex (ISC3) model. In this way, the UAV can expedite the monitoring task and save energy. Simulation results reveal that the AIS scheme strikes a good balance between cost and performance for the monitoring task. The cost is defined by the length of the UAV's flight path. Four metrics are adopted to evaluate the performance: accuracy, recall, precision, and F1-score. Moreover, we make a prototype system to show the feasibility of our framework, which measures the concentration of CO2 gases emitted from small chimneys in a micro-field with a single wind direction to recognize 3E-chimneys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精明的眼神完成签到,获得积分10
刚刚
3秒前
3秒前
3秒前
5秒前
科目三应助龙傲天采纳,获得10
6秒前
阮大帅气完成签到,获得积分10
6秒前
slb1319发布了新的文献求助10
8秒前
旷野发布了新的文献求助10
9秒前
10秒前
称心寒松发布了新的文献求助10
10秒前
10秒前
轻松的冥王星完成签到,获得积分10
13秒前
顺心觅松关注了科研通微信公众号
13秒前
JamesPei应助Ode采纳,获得10
14秒前
科研人儿完成签到,获得积分20
15秒前
haozi王发布了新的文献求助20
15秒前
efls完成签到,获得积分10
15秒前
17秒前
仲夏发布了新的文献求助30
21秒前
阿六完成签到,获得积分10
22秒前
大胆吐司发布了新的文献求助10
22秒前
22秒前
22秒前
bob完成签到,获得积分10
23秒前
害怕导师的小可怜完成签到,获得积分10
23秒前
haozi王完成签到,获得积分10
24秒前
zero完成签到,获得积分10
25秒前
龙傲天发布了新的文献求助10
26秒前
26秒前
顺心觅松发布了新的文献求助10
30秒前
Ode发布了新的文献求助10
31秒前
33秒前
胡蝶完成签到,获得积分10
34秒前
Ode完成签到,获得积分10
35秒前
36秒前
风评完成签到,获得积分10
38秒前
39秒前
科研通AI2S应助上官醉山采纳,获得10
39秒前
Lucas应助云客采纳,获得10
39秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740628
求助须知:如何正确求助?哪些是违规求助? 3283472
关于积分的说明 10035486
捐赠科研通 3000287
什么是DOI,文献DOI怎么找? 1646438
邀请新用户注册赠送积分活动 783615
科研通“疑难数据库(出版商)”最低求助积分说明 750411