A visual detection algorithm for autonomous driving road environment perception

计算机科学 感知 计算机视觉 人工智能 算法 人机交互 生物 神经科学
作者
Peichao Cong,Hao Feng,Shanda Li,Tianheng Li,Yutao Xu,Xin Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108034-108034 被引量:8
标识
DOI:10.1016/j.engappai.2024.108034
摘要

Achieving accurate and real-time perception of environmental targets in complex traffic scenes based on visual sensors is a challenging research problem in the field of autonomous driving technology. In methods to date, it is difficult to effectively balance the detection accuracy and speed. To this end, this paper proposes an interactive and lightweight visual detection algorithm – YRDM (Your Region Decision-Making) – based on the concepts of efficient mining and utilisation of target feature information, lightweight network structure, and optimisation of label allocation for highly practical detection of ambient targets in autonomous driving scenarios. First, a two-stage algorithm architecture consisting of four low-parameter subnetworks is constructed with the goal of efficiently mining and utilising target feature information, and the accuracy and effectiveness of the algorithm are balanced through the interaction of information between the subnetworks. Second, in order to further improve the detection speed, lightweight convolution is introduced into the structure of the YRDM network to construct the DSC3 module, which allows lightweight processing of the subnetwork structure. Finally, by converting the label assignment problem into an optimal transport problem, adaptation to the global nature of the samples by YRDM is improved, allowing better detection accuracy. The algorithm is tested with two major public datasets, BDD100K and KITTI, and a large number of experimental results show that the comprehensive performance of YRDM is better than other existing algorithms. In addition, ablation experiments and mobile terminal device deployment experiments further demonstrate the effectiveness and real-time performance of this algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kawayifenm完成签到,获得积分10
刚刚
sss发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
焦星星完成签到,获得积分10
2秒前
Double_N完成签到,获得积分10
3秒前
bias完成签到,获得积分10
4秒前
仁仁完成签到,获得积分10
4秒前
路人甲发布了新的文献求助200
5秒前
5秒前
科研通AI2S应助冷静的奇迹采纳,获得10
5秒前
佘炭炭完成签到,获得积分10
7秒前
Lynn怯霜静发布了新的文献求助10
7秒前
9秒前
彭于晏应助小马儿采纳,获得10
10秒前
10秒前
FashionBoy应助奶盖采纳,获得10
11秒前
SciGPT应助蝶衣采纳,获得10
13秒前
13秒前
苏苏发布了新的文献求助20
14秒前
纯牛奶杀手给纯牛奶杀手的求助进行了留言
14秒前
Wang发布了新的文献求助10
14秒前
Lynn怯霜静完成签到,获得积分10
15秒前
xiaoguo完成签到,获得积分10
16秒前
小桃耶完成签到,获得积分10
16秒前
舒服的觅夏完成签到,获得积分10
16秒前
17秒前
华老师完成签到,获得积分10
18秒前
妍妍发布了新的文献求助10
20秒前
guhuijun发布了新的文献求助10
21秒前
WX发布了新的文献求助10
22秒前
Survivor完成签到,获得积分10
23秒前
24秒前
Yolo发布了新的文献求助20
24秒前
linkman发布了新的文献求助10
28秒前
活力的招牌完成签到 ,获得积分10
31秒前
31秒前
葡萄炖雪梨完成签到 ,获得积分10
32秒前
乐观小之应助苏苏采纳,获得20
33秒前
蝶衣完成签到,获得积分10
33秒前
Sylvia完成签到 ,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110134
捐赠科研通 3233745
什么是DOI,文献DOI怎么找? 1787489
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152