A visual detection algorithm for autonomous driving road environment perception

计算机科学 感知 计算机视觉 人工智能 算法 人机交互 生物 神经科学
作者
Peichao Cong,Hao Feng,Shanda Li,Tianheng Li,Yutao Xu,Xin Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108034-108034 被引量:3
标识
DOI:10.1016/j.engappai.2024.108034
摘要

Achieving accurate and real-time perception of environmental targets in complex traffic scenes based on visual sensors is a challenging research problem in the field of autonomous driving technology. In methods to date, it is difficult to effectively balance the detection accuracy and speed. To this end, this paper proposes an interactive and lightweight visual detection algorithm – YRDM (Your Region Decision-Making) – based on the concepts of efficient mining and utilisation of target feature information, lightweight network structure, and optimisation of label allocation for highly practical detection of ambient targets in autonomous driving scenarios. First, a two-stage algorithm architecture consisting of four low-parameter subnetworks is constructed with the goal of efficiently mining and utilising target feature information, and the accuracy and effectiveness of the algorithm are balanced through the interaction of information between the subnetworks. Second, in order to further improve the detection speed, lightweight convolution is introduced into the structure of the YRDM network to construct the DSC3 module, which allows lightweight processing of the subnetwork structure. Finally, by converting the label assignment problem into an optimal transport problem, adaptation to the global nature of the samples by YRDM is improved, allowing better detection accuracy. The algorithm is tested with two major public datasets, BDD100K and KITTI, and a large number of experimental results show that the comprehensive performance of YRDM is better than other existing algorithms. In addition, ablation experiments and mobile terminal device deployment experiments further demonstrate the effectiveness and real-time performance of this algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助飞飞采纳,获得10
1秒前
土豆晴完成签到,获得积分10
2秒前
不知道是谁完成签到,获得积分10
3秒前
彩色菲鹰发布了新的文献求助10
3秒前
黄百川完成签到 ,获得积分10
6秒前
拼搏的白云完成签到,获得积分10
6秒前
Xu完成签到,获得积分10
8秒前
10秒前
真化石渡渡鸟完成签到,获得积分10
10秒前
小芒果完成签到,获得积分10
10秒前
10秒前
Ding完成签到,获得积分10
11秒前
tuanheqi应助完美的海秋采纳,获得30
13秒前
13秒前
Dream完成签到,获得积分0
14秒前
学术趴菜完成签到,获得积分10
14秒前
飞飞发布了新的文献求助10
16秒前
aabbccff发布了新的文献求助10
17秒前
代纤绮完成签到,获得积分10
17秒前
18秒前
19秒前
打打应助cyq采纳,获得10
19秒前
22秒前
搜集达人应助cxy采纳,获得30
23秒前
桐桐应助慈祥的翠桃采纳,获得10
24秒前
脑洞疼应助慈祥的翠桃采纳,获得10
24秒前
Hello应助慈祥的翠桃采纳,获得10
24秒前
阿九应助慈祥的翠桃采纳,获得10
24秒前
pluto应助慈祥的翠桃采纳,获得10
24秒前
pluto应助慈祥的翠桃采纳,获得10
24秒前
maox1aoxin应助慈祥的翠桃采纳,获得30
24秒前
zho应助慈祥的翠桃采纳,获得10
24秒前
maox1aoxin应助慈祥的翠桃采纳,获得30
24秒前
科研通AI2S应助慈祥的翠桃采纳,获得10
24秒前
25秒前
123完成签到,获得积分10
26秒前
27秒前
小唐完成签到 ,获得积分10
27秒前
27秒前
浅尝离白应助shuke采纳,获得30
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239773
求助须知:如何正确求助?哪些是违规求助? 2885001
关于积分的说明 8236206
捐赠科研通 2553180
什么是DOI,文献DOI怎么找? 1381447
科研通“疑难数据库(出版商)”最低求助积分说明 649245
邀请新用户注册赠送积分活动 624931