A visual detection algorithm for autonomous driving road environment perception

计算机科学 感知 计算机视觉 人工智能 算法 人机交互 生物 神经科学
作者
Peichao Cong,Hao Feng,Shanda Li,Tianheng Li,Yutao Xu,Xin Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108034-108034 被引量:3
标识
DOI:10.1016/j.engappai.2024.108034
摘要

Achieving accurate and real-time perception of environmental targets in complex traffic scenes based on visual sensors is a challenging research problem in the field of autonomous driving technology. In methods to date, it is difficult to effectively balance the detection accuracy and speed. To this end, this paper proposes an interactive and lightweight visual detection algorithm – YRDM (Your Region Decision-Making) – based on the concepts of efficient mining and utilisation of target feature information, lightweight network structure, and optimisation of label allocation for highly practical detection of ambient targets in autonomous driving scenarios. First, a two-stage algorithm architecture consisting of four low-parameter subnetworks is constructed with the goal of efficiently mining and utilising target feature information, and the accuracy and effectiveness of the algorithm are balanced through the interaction of information between the subnetworks. Second, in order to further improve the detection speed, lightweight convolution is introduced into the structure of the YRDM network to construct the DSC3 module, which allows lightweight processing of the subnetwork structure. Finally, by converting the label assignment problem into an optimal transport problem, adaptation to the global nature of the samples by YRDM is improved, allowing better detection accuracy. The algorithm is tested with two major public datasets, BDD100K and KITTI, and a large number of experimental results show that the comprehensive performance of YRDM is better than other existing algorithms. In addition, ablation experiments and mobile terminal device deployment experiments further demonstrate the effectiveness and real-time performance of this algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米娅完成签到,获得积分10
刚刚
刚刚
强健的妙菱完成签到,获得积分10
1秒前
1秒前
小蘑菇应助温柔若采纳,获得10
1秒前
李爱国应助通~采纳,获得10
1秒前
经竺应助小马哥采纳,获得10
1秒前
3秒前
单纯的芷蝶完成签到,获得积分10
3秒前
研友完成签到,获得积分10
3秒前
勤奋若风完成签到,获得积分10
3秒前
英姑应助每天都想下班采纳,获得10
4秒前
shooin完成签到,获得积分10
4秒前
佳佳发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
lin完成签到,获得积分20
5秒前
思源应助科研民工采纳,获得10
5秒前
忧郁凌波完成签到,获得积分10
5秒前
姜姜姜完成签到 ,获得积分10
6秒前
凶狠的绿兰完成签到,获得积分10
7秒前
多多少少忖测的情完成签到,获得积分10
7秒前
科研通AI5应助兴奋的宛白采纳,获得10
8秒前
9秒前
zhanlonglsj发布了新的文献求助10
9秒前
9秒前
芍药完成签到,获得积分10
9秒前
Yogita完成签到,获得积分10
10秒前
DoctorYan完成签到,获得积分10
10秒前
Adler完成签到,获得积分10
10秒前
11秒前
坐宝马吃地瓜完成签到 ,获得积分10
11秒前
SciGPT应助Strike采纳,获得10
11秒前
自强不息完成签到,获得积分10
11秒前
12秒前
czq发布了新的文献求助30
12秒前
望春风完成签到,获得积分10
12秒前
12秒前
huangJP完成签到,获得积分10
13秒前
情怀应助Tira采纳,获得10
13秒前
王阳洋完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740