亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-supervised learning based on Transformer for flow reconstruction and prediction

快照(计算机存储) 雷诺数 计算机科学 变压器 人工智能 机器学习 推论 模式识别(心理学) 物理 机械 电压 量子力学 湍流 操作系统
作者
Bonan Xu,Yuanye Zhou,Xin Bian
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (2) 被引量:6
标识
DOI:10.1063/5.0188998
摘要

Machine learning has great potential for efficient reconstruction and prediction of flow fields. However, existing datasets may have highly diversified labels for different flow scenarios, which are not applicable for training a model. To this end, we make a first attempt to apply the self-supervised learning (SSL) technique to fluid dynamics, which disregards data labels for pre-training the model. The SSL technique embraces a large amount of data (8000 snapshots) at Reynolds numbers of Re = 200, 300, 400, and 500 without discriminating between them, which improves the generalization of the model. The Transformer model is pre-trained via a specially designed pretext task, where it reconstructs the complete flow fields after randomly masking 20% data points in each snapshot. For the downstream task of flow reconstruction, the pre-trained model is fine-tuned separately with 256 snapshots for each Reynolds number. The fine-tuned models accurately reconstruct the complete flow fields based on less than 5% random data points within a limited window even for Re = 250 and 600, whose data were not seen in the pre-trained phase. For the other downstream task of flow prediction, the pre-training model is fine-tuned separately with 128 consecutive snapshot pairs for each corresponding Reynolds number. The fine-tuned models then correctly predict the evolution of the flow fields over many periods of cycles. We compare all results generated by models trained via SSL and models trained via supervised learning, where the former has unequivocally superior performance. We expect that the methodology presented here will have wider applications in fluid mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mark707完成签到,获得积分10
2秒前
上官若男应助连安阳采纳,获得10
3秒前
嗯哼举报伽易求助涉嫌违规
4秒前
阳光以筠发布了新的文献求助30
6秒前
领导范儿应助mark707采纳,获得50
7秒前
Darcy应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
YifanWang应助科研通管家采纳,获得20
8秒前
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
唐唐完成签到 ,获得积分10
9秒前
12秒前
27秒前
科研通AI2S应助dilmurat10采纳,获得10
33秒前
largpark完成签到 ,获得积分10
38秒前
40秒前
唉呀发布了新的文献求助10
44秒前
45秒前
47秒前
嗯哼举报homie求助涉嫌违规
49秒前
52秒前
psypsy发布了新的文献求助10
53秒前
Akim应助cl采纳,获得10
54秒前
唉呀完成签到,获得积分20
55秒前
科研通AI2S应助零_采纳,获得10
1分钟前
1分钟前
1分钟前
可可不西锂完成签到 ,获得积分10
1分钟前
cl发布了新的文献求助10
1分钟前
1分钟前
大模型应助矫健的man采纳,获得10
1分钟前
1分钟前
1分钟前
小丑鱼儿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
DTL哈哈完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229674
求助须知:如何正确求助?哪些是违规求助? 2877215
关于积分的说明 8198517
捐赠科研通 2544654
什么是DOI,文献DOI怎么找? 1374549
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774