亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of prognostic coagulation-related signatures in clear cell renal cell carcinoma through integrated multi-omics analysis and machine learning

血管生成 肾透明细胞癌 免疫系统 生物 基因签名 凝结 癌症研究 肾细胞癌 DNA甲基化 计算生物学 生物信息学 基因 免疫学 医学 基因表达 肿瘤科 遗传学 内科学
作者
Ruijie Liu,Qi Wang,Xiaoping Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:168: 107779-107779 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107779
摘要

Clear cell renal cell carcinoma is a threat to public health with high morbidity and mortality. Clinical evidence has shown that cancer-associated thrombosis poses significant challenges to treatments, including drug resistance and difficulties in surgical decision-making in ccRCC. However, the coagulation pathway, one of the core mechanisms of cancer-associated thrombosis, recently found closely related to the tumor microenvironment and immune-related pathway, is rarely researched in ccRCC. Therefore, we integrated bulk RNA-seq data, DNA mutation and methylation data, single-cell data, and proteomic data to perform a comprehensive analysis of coagulation-related genes in ccRCC. First, we demonstrated the importance of the coagulation-related gene set by consensus clustering. Based on machine learning, we identified 5 coagulation signature genes and verified their clinical value in TCGA, ICGC, and E-MTAB-1980 databases. It's also demonstrated that the specific expression patterns of coagulation signature genes driven by CNV and methylation were closely correlated with pathways including apoptosis, immune infiltration, angiogenesis, and the construction of extracellular matrix. Moreover, we identified two types of tumor cells in single-cell data by machine learning, and the coagulation signature genes were differentially expressed in two types of tumor cells. Besides, the signature genes were proven to influence immune cells especially the differentiation of T cells. And their protein level was also validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫的代芙完成签到,获得积分10
7秒前
34秒前
41秒前
48秒前
50秒前
饱满书雁发布了新的文献求助10
57秒前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
不要命的皮卡丘完成签到,获得积分10
1分钟前
科研通AI5应助张清采纳,获得10
1分钟前
尤尢应助饱满书雁采纳,获得10
1分钟前
1分钟前
张清发布了新的文献求助10
1分钟前
桥桥乔乔完成签到 ,获得积分10
1分钟前
lhr完成签到,获得积分10
2分钟前
高数数完成签到 ,获得积分10
2分钟前
2分钟前
mmmxxxjjj发布了新的文献求助30
2分钟前
2分钟前
pollen发布了新的文献求助10
3分钟前
mmmxxxjjj完成签到,获得积分20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
3分钟前
pollen完成签到,获得积分10
3分钟前
3分钟前
liwang9301完成签到,获得积分10
3分钟前
blenx完成签到,获得积分10
3分钟前
VDC应助苗条绝义采纳,获得30
3分钟前
Link发布了新的文献求助10
4分钟前
Link完成签到,获得积分10
4分钟前
4分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
DrS完成签到,获得积分10
5分钟前
坚定毛衣完成签到,获得积分10
5分钟前
张清完成签到,获得积分10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562005
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412566
捐赠科研通 2835932
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716865