Identification of prognostic coagulation-related signatures in clear cell renal cell carcinoma through integrated multi-omics analysis and machine learning

血管生成 肾透明细胞癌 免疫系统 生物 基因签名 凝结 癌症研究 肾细胞癌 DNA甲基化 计算生物学 生物信息学 基因 免疫学 医学 基因表达 肿瘤科 遗传学 内科学
作者
Ruijie Liu,Qi Wang,Xiaoping Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:168: 107779-107779 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107779
摘要

Clear cell renal cell carcinoma is a threat to public health with high morbidity and mortality. Clinical evidence has shown that cancer-associated thrombosis poses significant challenges to treatments, including drug resistance and difficulties in surgical decision-making in ccRCC. However, the coagulation pathway, one of the core mechanisms of cancer-associated thrombosis, recently found closely related to the tumor microenvironment and immune-related pathway, is rarely researched in ccRCC. Therefore, we integrated bulk RNA-seq data, DNA mutation and methylation data, single-cell data, and proteomic data to perform a comprehensive analysis of coagulation-related genes in ccRCC. First, we demonstrated the importance of the coagulation-related gene set by consensus clustering. Based on machine learning, we identified 5 coagulation signature genes and verified their clinical value in TCGA, ICGC, and E-MTAB-1980 databases. It's also demonstrated that the specific expression patterns of coagulation signature genes driven by CNV and methylation were closely correlated with pathways including apoptosis, immune infiltration, angiogenesis, and the construction of extracellular matrix. Moreover, we identified two types of tumor cells in single-cell data by machine learning, and the coagulation signature genes were differentially expressed in two types of tumor cells. Besides, the signature genes were proven to influence immune cells especially the differentiation of T cells. And their protein level was also validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助ll200207采纳,获得10
1秒前
CLF发布了新的文献求助10
1秒前
1秒前
搞怪羊完成签到,获得积分20
2秒前
在水一方应助qd采纳,获得10
2秒前
一一发布了新的文献求助10
2秒前
充电宝应助anna521212采纳,获得20
3秒前
4秒前
Quan发布了新的文献求助10
5秒前
wang发布了新的文献求助10
5秒前
wasiwan完成签到,获得积分10
6秒前
Xxi完成签到,获得积分10
8秒前
9秒前
CLF完成签到,获得积分10
9秒前
10秒前
火星上的芹菜完成签到,获得积分10
10秒前
斯文败类应助qiyr采纳,获得10
11秒前
11秒前
EASA完成签到,获得积分10
12秒前
怕孤单的凝天关注了科研通微信公众号
14秒前
北沐发布了新的文献求助10
14秒前
一一完成签到,获得积分10
14秒前
XS_QI发布了新的文献求助10
14秒前
奶味蓝发布了新的文献求助10
16秒前
zlz完成签到,获得积分10
17秒前
FashionBoy应助小哲采纳,获得10
17秒前
张继豪发布了新的文献求助20
17秒前
18秒前
18秒前
科研通AI5应助LHL采纳,获得10
19秒前
青4096发布了新的文献求助10
19秒前
王淇茜完成签到,获得积分10
20秒前
山水有重逢完成签到,获得积分10
22秒前
rachel发布了新的文献求助10
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769651
求助须知:如何正确求助?哪些是违规求助? 3314720
关于积分的说明 10173463
捐赠科研通 3030075
什么是DOI,文献DOI怎么找? 1662585
邀请新用户注册赠送积分活动 795040
科研通“疑难数据库(出版商)”最低求助积分说明 756519