亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion

计算机科学 人工智能 机器学习
作者
Z M Jin,Minhui Wang,Chang Tang,Xiao Zheng,Wen Zhang,Xiaofeng Sha,Shan An
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107904-107904 被引量:25
标识
DOI:10.1016/j.compbiomed.2023.107904
摘要

miRNAs are a class of small non-coding RNA molecules that play important roles in gene regulation. They are crucial for maintaining normal cellular functions, and dysregulation or dysfunction of miRNAs which are linked to the onset and advancement of multiple human diseases. Research on miRNAs has unveiled novel avenues in the realm of the diagnosis, treatment, and prevention of human diseases. However, clinical trials pose challenges and drawbacks, such as complexity and time-consuming processes, which create obstacles for many researchers. Graph Attention Network (GAT) has shown excellent performance in handling graph-structured data for tasks such as link prediction. Some studies have successfully applied GAT to miRNA-disease association prediction. However, there are several drawbacks to existing methods. Firstly, most of the previous models rely solely on concatenation operations to merge features of miRNAs and diseases, which results in the deprivation of significant modality-specific information and even the inclusion of redundant information. Secondly, as the number of layers in GAT increases, there is a possibility of excessive smoothing in the feature extraction process, which significantly affects the prediction accuracy. To address these issues and effectively complete miRNA disease prediction tasks, we propose an innovative model called Multiplex Adaptive Modality Fusion Graph Attention Network (MAMFGAT). MAMFGAT utilizes GAT as the main structure for feature aggregation and incorporates a multi-modal adaptive fusion module to extract features from three interconnected networks: the miRNA-disease association network, the miRNA similarity network, and the disease similarity network. It employs adaptive learning and cross-modality contrastive learning to fuse more effective miRNA and disease feature embeddings as well as incorporates multi-modal residual feature fusion to tackle the problem of excessive feature smoothing in GATs. Finally, we employ a Multi-Layer Perceptron (MLP) model that takes the embeddings of miRNA and disease features as input to anticipate the presence of potential miRNA-disease associations. Extensive experimental results provide evidence of the superior performance of MAMFGAT in comparison to other state-of-the-art methods. To validate the significance of various modalities and assess the efficacy of the designed modules, we performed an ablation analysis. Furthermore, MAMFGAT shows outstanding performance in three cancer case studies, indicating that it is a reliable method for studying the association between miRNA and diseases. The implementation of MAMFGAT can be accessed at the following GitHub repository: https://github.com/zixiaojin66/MAMFGAT-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助畅快甜瓜采纳,获得30
刚刚
3秒前
15秒前
17秒前
23秒前
33秒前
33秒前
33秒前
矢思然完成签到,获得积分10
37秒前
38秒前
寒冷念文发布了新的文献求助10
39秒前
40秒前
默默完成签到 ,获得积分10
48秒前
bkagyin应助寒冷念文采纳,获得10
48秒前
52秒前
狂野的含烟完成签到 ,获得积分10
54秒前
57秒前
57秒前
1分钟前
1分钟前
1分钟前
ffff完成签到 ,获得积分10
1分钟前
畅快甜瓜发布了新的文献求助30
1分钟前
华仔应助Omni采纳,获得10
1分钟前
yb完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
ljy完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
星辰大海应助畅快甜瓜采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
weibo完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732177
求助须知:如何正确求助?哪些是违规求助? 5337212
关于积分的说明 15322034
捐赠科研通 4877874
什么是DOI,文献DOI怎么找? 2620700
邀请新用户注册赠送积分活动 1569938
关于科研通互助平台的介绍 1526542