亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion

计算机科学 人工智能 机器学习
作者
Z M Jin,Minhui Wang,Chang Tang,Xiao Zheng,Wen Zhang,Xiaofeng Sha,Shan An
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107904-107904 被引量:15
标识
DOI:10.1016/j.compbiomed.2023.107904
摘要

miRNAs are a class of small non-coding RNA molecules that play important roles in gene regulation. They are crucial for maintaining normal cellular functions, and dysregulation or dysfunction of miRNAs which are linked to the onset and advancement of multiple human diseases. Research on miRNAs has unveiled novel avenues in the realm of the diagnosis, treatment, and prevention of human diseases. However, clinical trials pose challenges and drawbacks, such as complexity and time-consuming processes, which create obstacles for many researchers. Graph Attention Network (GAT) has shown excellent performance in handling graph-structured data for tasks such as link prediction. Some studies have successfully applied GAT to miRNA-disease association prediction. However, there are several drawbacks to existing methods. Firstly, most of the previous models rely solely on concatenation operations to merge features of miRNAs and diseases, which results in the deprivation of significant modality-specific information and even the inclusion of redundant information. Secondly, as the number of layers in GAT increases, there is a possibility of excessive smoothing in the feature extraction process, which significantly affects the prediction accuracy. To address these issues and effectively complete miRNA disease prediction tasks, we propose an innovative model called Multiplex Adaptive Modality Fusion Graph Attention Network (MAMFGAT). MAMFGAT utilizes GAT as the main structure for feature aggregation and incorporates a multi-modal adaptive fusion module to extract features from three interconnected networks: the miRNA-disease association network, the miRNA similarity network, and the disease similarity network. It employs adaptive learning and cross-modality contrastive learning to fuse more effective miRNA and disease feature embeddings as well as incorporates multi-modal residual feature fusion to tackle the problem of excessive feature smoothing in GATs. Finally, we employ a Multi-Layer Perceptron (MLP) model that takes the embeddings of miRNA and disease features as input to anticipate the presence of potential miRNA-disease associations. Extensive experimental results provide evidence of the superior performance of MAMFGAT in comparison to other state-of-the-art methods. To validate the significance of various modalities and assess the efficacy of the designed modules, we performed an ablation analysis. Furthermore, MAMFGAT shows outstanding performance in three cancer case studies, indicating that it is a reliable method for studying the association between miRNA and diseases. The implementation of MAMFGAT can be accessed at the following GitHub repository: https://github.com/zixiaojin66/MAMFGAT-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
lijiawei发布了新的文献求助10
12秒前
Criminology34发布了新的文献求助50
14秒前
睡觉补充能量完成签到,获得积分10
14秒前
fengfenghao完成签到,获得积分10
20秒前
小凯完成签到 ,获得积分10
23秒前
jueshadi完成签到 ,获得积分10
23秒前
朵朵完成签到,获得积分10
25秒前
30秒前
34秒前
dong发布了新的文献求助10
35秒前
37秒前
37秒前
37秒前
aaaaal发布了新的文献求助10
39秒前
41秒前
annaanna完成签到 ,获得积分10
43秒前
Criminology34发布了新的文献求助50
45秒前
ccc完成签到 ,获得积分10
45秒前
47秒前
YY发布了新的文献求助10
47秒前
Gin发布了新的文献求助10
50秒前
aaaaal完成签到,获得积分10
50秒前
Becky完成签到 ,获得积分10
53秒前
54秒前
杨北风完成签到 ,获得积分20
54秒前
科研通AI6应助科研通管家采纳,获得10
55秒前
56秒前
共享精神应助科研通管家采纳,获得10
56秒前
56秒前
所所应助科研通管家采纳,获得10
56秒前
56秒前
56秒前
Hello应助科研通管家采纳,获得10
56秒前
小蘑菇应助科研通管家采纳,获得10
56秒前
56秒前
ye发布了新的文献求助20
59秒前
1分钟前
1分钟前
Abu完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944655
求助须知:如何正确求助?哪些是违规求助? 4209521
关于积分的说明 13085355
捐赠科研通 3989302
什么是DOI,文献DOI怎么找? 2184055
邀请新用户注册赠送积分活动 1199418
关于科研通互助平台的介绍 1112457