Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion

计算机科学 人工智能 机器学习
作者
Z M Jin,Minhui Wang,Chang Tang,Xiao Zheng,Wen Zhang,Xiaofeng Sha,Shan An
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107904-107904 被引量:5
标识
DOI:10.1016/j.compbiomed.2023.107904
摘要

miRNAs are a class of small non-coding RNA molecules that play important roles in gene regulation. They are crucial for maintaining normal cellular functions, and dysregulation or dysfunction of miRNAs which are linked to the onset and advancement of multiple human diseases. Research on miRNAs has unveiled novel avenues in the realm of the diagnosis, treatment, and prevention of human diseases. However, clinical trials pose challenges and drawbacks, such as complexity and time-consuming processes, which create obstacles for many researchers. Graph Attention Network (GAT) has shown excellent performance in handling graph-structured data for tasks such as link prediction. Some studies have successfully applied GAT to miRNA-disease association prediction. However, there are several drawbacks to existing methods. Firstly, most of the previous models rely solely on concatenation operations to merge features of miRNAs and diseases, which results in the deprivation of significant modality-specific information and even the inclusion of redundant information. Secondly, as the number of layers in GAT increases, there is a possibility of excessive smoothing in the feature extraction process, which significantly affects the prediction accuracy. To address these issues and effectively complete miRNA disease prediction tasks, we propose an innovative model called Multiplex Adaptive Modality Fusion Graph Attention Network (MAMFGAT). MAMFGAT utilizes GAT as the main structure for feature aggregation and incorporates a multi-modal adaptive fusion module to extract features from three interconnected networks: the miRNA-disease association network, the miRNA similarity network, and the disease similarity network. It employs adaptive learning and cross-modality contrastive learning to fuse more effective miRNA and disease feature embeddings as well as incorporates multi-modal residual feature fusion to tackle the problem of excessive feature smoothing in GATs. Finally, we employ a Multi-Layer Perceptron (MLP) model that takes the embeddings of miRNA and disease features as input to anticipate the presence of potential miRNA-disease associations. Extensive experimental results provide evidence of the superior performance of MAMFGAT in comparison to other state-of-the-art methods. To validate the significance of various modalities and assess the efficacy of the designed modules, we performed an ablation analysis. Furthermore, MAMFGAT shows outstanding performance in three cancer case studies, indicating that it is a reliable method for studying the association between miRNA and diseases. The implementation of MAMFGAT can be accessed at the following GitHub repository: https://github.com/zixiaojin66/MAMFGAT-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZJ完成签到,获得积分10
1秒前
桐桐应助务实黄豆采纳,获得10
1秒前
慕青应助maodoudou采纳,获得10
1秒前
田様应助城中慕楚寒采纳,获得10
1秒前
项之桃完成签到,获得积分10
1秒前
小趴菜完成签到,获得积分20
2秒前
Abdurrahman发布了新的文献求助10
2秒前
3秒前
3秒前
都是发布了新的文献求助10
3秒前
nine2652完成签到 ,获得积分10
3秒前
健壮的弼完成签到,获得积分20
4秒前
HBXAurora发布了新的文献求助10
4秒前
4秒前
深情安青应助lilaiyang采纳,获得10
4秒前
Xu完成签到,获得积分10
4秒前
iu完成签到,获得积分10
5秒前
6秒前
慕容真完成签到,获得积分10
6秒前
芜湖完成签到,获得积分10
6秒前
Laniakea完成签到,获得积分10
7秒前
7秒前
Tss完成签到,获得积分20
7秒前
赶紧大聪明完成签到,获得积分10
8秒前
zp发布了新的文献求助10
9秒前
慕青应助Jing采纳,获得10
9秒前
正直凌文发布了新的文献求助10
9秒前
10秒前
刘十一完成签到 ,获得积分10
11秒前
11秒前
华仔应助哈哈哈采纳,获得10
12秒前
12秒前
桐桐应助陈少华采纳,获得10
12秒前
mao完成签到,获得积分20
12秒前
大胆的鲂完成签到,获得积分10
13秒前
英姑应助科研工作者采纳,获得10
13秒前
13秒前
13秒前
所所应助大胆的弼采纳,获得10
13秒前
迷路的沛芹完成签到 ,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134447
求助须知:如何正确求助?哪些是违规求助? 2785391
关于积分的说明 7771957
捐赠科研通 2441024
什么是DOI,文献DOI怎么找? 1297678
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813