材料科学
串联
表面光电压
开尔文探针力显微镜
钙钛矿(结构)
带隙
卤化物
光电子学
纳米技术
碘化物
太阳能电池
化学工程
原子力显微镜
无机化学
复合材料
化学
工程类
物理
量子力学
光谱学
作者
Sheng Li,Zhuo Zheng,Jiaqi Ju,Siyang Cheng,Feiyu Chen,Zexu Xue,Li Ma,Zhiping Wang
标识
DOI:10.1002/adma.202307701
摘要
Abstract Efficient wide bandgap (WBG) perovskite solar cells (PSCs) are essential for fully maximizing the potential of tandem solar cells. However, these cells currently face challenges such as high photovoltage losses and the presence of phase segregation, which impede the attainment of their expected efficiency and stability. Herein, the root cause of halide segregation is investigated, uncovering a close association with the presence of locally aggregated lead iodide (PbI 2 ), particularly at the perovskite/C 60 interface. Kelvin‐probe atomic force microscopy results indicate that the remaining PbI 2 at the interface leads to potential electrical differences between the domain surface and boundaries, which drives the formation of halide segregation. By reacting the surface PbI 2 residue with ethanediamine dihydroiodide (EDAI 2 ) at proper temperature, it is possible to effectively mitigate the phase segregation. By applying this surface reaction strategy in WBG inverted cells, a notable improvement of ≈100 mV is achieved in photovoltage over a wide range of WBG cells (1.67–1.78 eV), resulting in a champion efficiency of 23.1% (certified 22.95%) for 1.67 eV cells and 19.7% (certified 18.81%) for 1.75 eV cells. Furthermore, efficiency of 26.1% is demonstrated in a monolithic all‐perovskite tandem cell.
科研通智能强力驱动
Strongly Powered by AbleSci AI