A Review: Object Detection and Classification Using Side Scan Sonar Images via Deep Learning Techniques

人工智能 分类 深度学习 计算机科学 目标检测 声纳 侧扫声纳 水下 分割 对象(语法) 计算机视觉 机器学习 模式识别(心理学) 图像分割 地理 考古
作者
K. Sivachandra,R. Kumudham
出处
期刊:Studies in computational intelligence 卷期号:: 229-249
标识
DOI:10.1007/978-3-031-43009-1_20
摘要

Deep learning technique which is otherwise called either deep machine learning or deep construction based learning approaches, have newly attained remarkable accomplishment in processing images digitally for object recognition and also categorization. Accordingly, object detection and classification are quickly reached the esteem and attention from computer vision investigation society. Also, this enormous growth in imaging data has drive necessitate for detection and classification automatically through deep learning NN based classifiers. In this paper, reviewed several existing research work from the year 2015 to 2021 regarding detection of objects in underwater acoustics on side scan sonar images using various techniques such as deep based CNN, machine learning and image processing used by various researchers. Also, how the detected objects in seafloor were categorized into mine, rocks, mud and other non-mine objects were analyzed. Moreover, several CNN architectures were established for objects recognition, segmentation in underwater sea by various investigators. And finally what kind of datasets utilized by various authors found in their research works along with published year, techniques such as ML, DL, the objective of each existing work, detection accuracy, classification accuracy, and what kind of outcomes every author determined were summarized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘿嘿嘿完成签到,获得积分10
1秒前
1秒前
落幕熊猫完成签到,获得积分10
2秒前
遇上就这样吧应助是的哇采纳,获得10
3秒前
无心的天薇完成签到,获得积分10
3秒前
希望天下0贩的0应助sue采纳,获得100
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
伶俐雪曼完成签到 ,获得积分10
6秒前
6秒前
zyb完成签到,获得积分10
6秒前
gatts发布了新的文献求助10
6秒前
6秒前
李爱国应助sill采纳,获得30
7秒前
呱牛完成签到,获得积分10
8秒前
8秒前
9秒前
新野发布了新的文献求助10
9秒前
10秒前
JamesPei应助FOLY采纳,获得10
10秒前
ypx完成签到,获得积分10
10秒前
sibo完成签到,获得积分10
10秒前
静不净发布了新的文献求助10
11秒前
DENG完成签到,获得积分10
11秒前
11秒前
科研通AI5应助fff采纳,获得10
11秒前
12秒前
爆米花应助悲凉的溪流采纳,获得10
12秒前
12秒前
persist发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
科研通AI5应助机灵冰珍采纳,获得10
13秒前
13秒前
脑洞疼应助无心的天薇采纳,获得10
14秒前
14秒前
wuwei发布了新的文献求助10
15秒前
ning发布了新的文献求助10
16秒前
晴天完成签到 ,获得积分10
16秒前
耍酷擎发布了新的文献求助10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771