Multiple machine-learning tools identifying prognostic biomarkers for acute Myeloid Leukemia

髓系白血病 支持向量机 肿瘤科 机器学习 特征选择 基因 梯度升压 医学 随机森林 内科学 计算生物学 计算机科学 人工智能 生物信息学 生物 遗传学
作者
Yujing Cheng,Xin Yang,Ying Wang,Qi Li,Wanlu Chen,Run Dai,Chan Zhang
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:24 (1) 被引量:4
标识
DOI:10.1186/s12911-023-02408-9
摘要

Abstract Background Acute Myeloid Leukemia (AML) generally has a relatively low survival rate after treatment. There is an urgent need to find new biomarkers that may improve the survival prognosis of patients. Machine-learning tools are more and more widely used in the screening of biomarkers. Methods Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine-Recursive Feature Elimination (SVM-RFE), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), lrFuncs, IdaProfile, caretFuncs, and nbFuncs models were used to screen key genes closely associated with AML. Then, based on the Cancer Genome Atlas (TCGA), pan-cancer analysis was performed to determine the correlation between important genes and AML or other cancers. Finally, the diagnostic value of important genes for AML was verified in different data sets. Results The survival analysis results of the training set showed 26 genes with survival differences. After the intersection of the results of each machine learning method, DNM1, MEIS1, and SUSD3 were selected as key genes for subsequent analysis. The results of the pan-cancer analysis showed that MEIS1 and DNM1 were significantly highly expressed in AML; MEIS1 and SUSD3 are potential risk factors for the prognosis of AML, and DNM1 is a potential protective factor. Three key genes were significantly associated with AML immune subtypes and multiple immune checkpoints in AML. The results of the verification analysis show that DNM1, MEIS1, and SUSD3 have potential diagnostic value for AML. Conclusion Multiple machine learning methods identified DNM1, MEIS1, and SUSD3 can be regarded as prognostic biomarkers for AML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
森樱发布了新的文献求助10
1秒前
黄辉冯完成签到,获得积分10
2秒前
Wenpandaen发布了新的文献求助10
3秒前
希望天下0贩的0应助anneke_采纳,获得10
3秒前
Wu完成签到,获得积分10
3秒前
宫冷雁发布了新的文献求助10
4秒前
5秒前
5秒前
思源应助aillonm采纳,获得10
5秒前
5秒前
DDD完成签到,获得积分20
6秒前
6秒前
大明发布了新的文献求助10
6秒前
janejane发布了新的文献求助10
6秒前
刻苦千琴完成签到,获得积分10
6秒前
8秒前
彭于晏完成签到,获得积分10
9秒前
wentyli发布了新的文献求助30
10秒前
XHT关闭了XHT文献求助
10秒前
10秒前
11秒前
LHTTT发布了新的文献求助10
11秒前
科研小白发布了新的文献求助10
11秒前
小其完成签到,获得积分10
12秒前
赵楠完成签到 ,获得积分10
12秒前
昰昱完成签到,获得积分10
12秒前
14秒前
冷艳悲完成签到,获得积分10
14秒前
小其发布了新的文献求助10
14秒前
14秒前
害羞的大炮完成签到,获得积分10
15秒前
hhuajw完成签到,获得积分10
15秒前
aillonm完成签到,获得积分20
15秒前
脑洞疼应助berg采纳,获得10
16秒前
16秒前
洞两发布了新的文献求助10
16秒前
李健的小迷弟应助森森采纳,获得10
17秒前
科研小白完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564065
求助须知:如何正确求助?哪些是违规求助? 3137276
关于积分的说明 9421653
捐赠科研通 2837658
什么是DOI,文献DOI怎么找? 1559942
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717215