Deep Learning-Assisted Rapid Assessment of Food Freshness Using an Anti-interfering Triple-Emission Ratiometric Fluorescent Sensor

荧光 反应杯 深度学习 吞吐量 化学 计算机科学 人工智能 纳米技术 电信 材料科学 光学 物理 无线
作者
Wu Chun,Hongrong Chang,Xianjin Chen,Si Kyung Yang,Yanfa Dai,Ping Tan,Yuhui Chen,Chengao Shen,Zhiwei Lu,Mengmeng Sun,Gehong Su,Yanying Wang,Yuanfeng Zou,Huimin Wang,Hanbing Rao,Tao Liu
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:12 (6): 2465-2475 被引量:4
标识
DOI:10.1021/acssuschemeng.3c07765
摘要

The assessment of food freshness is of paramount significance for the maintenance of human health. However, the presence of an interfering background signal from food samples often leads to inevitable false negative results, which remains a formidable challenge in the rapid assessment of food freshness. To address this issue, a bioinspired anti-interfering triple-emission ratiometric fluorescent sensor was developed based on a deep learning strategy to enhance the signal-to-noise ratio in complex real sample and to allow for the rapid real-time detection with significantly reduced sample size. It was enriched with tubular foot-like functional groups (–NH2 and –COOH), which showed good linearity between pH 2.5–9.5 with successive fluorescence color change from blue-green to light green, light yellow, orange, and red. Three YOLO deep learning algorithm models were used to construct self-designed smart WeChat applets for high-throughput analysis, and two unique 3D printing toolboxes based on a 96-well plate and cuvette for sample analysis were also designed. The rapid high-throughput classification of a wide range of beverages and real-time monitoring of food freshness based on a hydrogel tag were also validated for reference. Prospectively, deep learning-assisted creation of proportional sensors will be critical to increasing the diversity and high throughput of real-time monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淳于一江完成签到,获得积分20
刚刚
Xx发布了新的文献求助40
刚刚
1秒前
1秒前
2秒前
小蘑菇应助廖念采纳,获得10
4秒前
6秒前
苏苏发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
平常寒烟完成签到,获得积分10
8秒前
123456完成签到 ,获得积分10
8秒前
科研笨男人完成签到,获得积分10
9秒前
9秒前
芍药完成签到 ,获得积分10
10秒前
11秒前
20发布了新的文献求助10
12秒前
闻风听雨发布了新的文献求助10
13秒前
Xx完成签到,获得积分10
13秒前
14秒前
15秒前
笛九完成签到 ,获得积分10
15秒前
17秒前
万能图书馆应助诗意采纳,获得10
18秒前
VV完成签到,获得积分10
21秒前
隆龙完成签到,获得积分10
21秒前
Jiatong7完成签到,获得积分10
21秒前
leaolf应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
fendy应助科研通管家采纳,获得50
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
ding应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
LaTeXer应助科研通管家采纳,获得100
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911831
求助须知:如何正确求助?哪些是违规求助? 4187185
关于积分的说明 13003332
捐赠科研通 3955152
什么是DOI,文献DOI怎么找? 2168569
邀请新用户注册赠送积分活动 1187064
关于科研通互助平台的介绍 1094301