Deep Learning-Assisted Rapid Assessment of Food Freshness Using an Anti-interfering Triple-Emission Ratiometric Fluorescent Sensor

荧光 化学 纳米技术 组合化学 材料科学 量子力学 物理
作者
Wu Chun,Hongrong Chang,Xianjin Chen,Si Kyung Yang,Y. DAI,Ping Tan,Yuhui Chen,Chengao Shen,Zhiwei Lu,Mengmeng Sun,Gehong Su,Sheng Wang,Yuanfeng Zou,Huimin Wang,Hanbing Rao,Tao Liu
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:12 (6): 2465-2475
标识
DOI:10.1021/acssuschemeng.3c07765
摘要

The assessment of food freshness is of paramount significance for the maintenance of human health. However, the presence of an interfering background signal from food samples often leads to inevitable false negative results, which remains a formidable challenge in the rapid assessment of food freshness. To address this issue, a bioinspired anti-interfering triple-emission ratiometric fluorescent sensor was developed based on a deep learning strategy to enhance the signal-to-noise ratio in complex real sample and to allow for the rapid real-time detection with significantly reduced sample size. It was enriched with tubular foot-like functional groups (–NH2 and –COOH), which showed good linearity between pH 2.5–9.5 with successive fluorescence color change from blue-green to light green, light yellow, orange, and red. Three YOLO deep learning algorithm models were used to construct self-designed smart WeChat applets for high-throughput analysis, and two unique 3D printing toolboxes based on a 96-well plate and cuvette for sample analysis were also designed. The rapid high-throughput classification of a wide range of beverages and real-time monitoring of food freshness based on a hydrogel tag were also validated for reference. Prospectively, deep learning-assisted creation of proportional sensors will be critical to increasing the diversity and high throughput of real-time monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZHWSND完成签到,获得积分10
刚刚
方文杰完成签到 ,获得积分10
刚刚
曾子曰完成签到,获得积分10
1秒前
红黄蓝完成签到 ,获得积分10
1秒前
bkagyin应助kkkkdream采纳,获得10
3秒前
Dore发布了新的文献求助10
3秒前
李爱国应助撒哇得卡采纳,获得10
4秒前
wcywd完成签到 ,获得积分10
4秒前
乐乐应助贝壳采纳,获得10
4秒前
mew桑完成签到,获得积分10
4秒前
无语的青丝完成签到,获得积分10
5秒前
kepwake完成签到,获得积分10
5秒前
自觉的小海豚完成签到 ,获得积分10
6秒前
kk完成签到 ,获得积分10
6秒前
6秒前
巢周舟完成签到,获得积分10
6秒前
Lucas应助zeercher采纳,获得10
6秒前
6秒前
吃饱了就晒太阳完成签到,获得积分10
6秒前
7秒前
7秒前
青蛙十字绣00700完成签到,获得积分10
7秒前
大模型应助lx采纳,获得10
8秒前
111123123123完成签到 ,获得积分10
9秒前
贝拉完成签到 ,获得积分10
9秒前
淡定的萝莉完成签到 ,获得积分10
10秒前
忐忑的邑完成签到,获得积分10
10秒前
10秒前
11秒前
范天问完成签到,获得积分10
11秒前
木子完成签到,获得积分10
11秒前
彭于晏应助搞怪的流沙采纳,获得10
12秒前
TiO太阳发布了新的文献求助10
12秒前
zz发布了新的文献求助10
12秒前
光电很亮完成签到,获得积分10
13秒前
上山石头发布了新的文献求助10
13秒前
啦啦啦发布了新的文献求助10
14秒前
Distance完成签到,获得积分10
15秒前
15秒前
鸣蜩十三完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134447
求助须知:如何正确求助?哪些是违规求助? 2785391
关于积分的说明 7771957
捐赠科研通 2441024
什么是DOI,文献DOI怎么找? 1297678
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813