重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Deep Learning-Assisted Rapid Assessment of Food Freshness Using an Anti-interfering Triple-Emission Ratiometric Fluorescent Sensor

荧光 反应杯 深度学习 吞吐量 化学 计算机科学 人工智能 纳米技术 电信 材料科学 光学 物理 无线
作者
Wu Chun,Hongrong Chang,Xianjin Chen,Si Kyung Yang,Yanfa Dai,Ping Tan,Yuhui Chen,Chengao Shen,Zhiwei Lu,Mengmeng Sun,Gehong Su,Yanying Wang,Yuanfeng Zou,Huimin Wang,Hanbing Rao,Tao Liu
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:12 (6): 2465-2475 被引量:10
标识
DOI:10.1021/acssuschemeng.3c07765
摘要

The assessment of food freshness is of paramount significance for the maintenance of human health. However, the presence of an interfering background signal from food samples often leads to inevitable false negative results, which remains a formidable challenge in the rapid assessment of food freshness. To address this issue, a bioinspired anti-interfering triple-emission ratiometric fluorescent sensor was developed based on a deep learning strategy to enhance the signal-to-noise ratio in complex real sample and to allow for the rapid real-time detection with significantly reduced sample size. It was enriched with tubular foot-like functional groups (–NH2 and –COOH), which showed good linearity between pH 2.5–9.5 with successive fluorescence color change from blue-green to light green, light yellow, orange, and red. Three YOLO deep learning algorithm models were used to construct self-designed smart WeChat applets for high-throughput analysis, and two unique 3D printing toolboxes based on a 96-well plate and cuvette for sample analysis were also designed. The rapid high-throughput classification of a wide range of beverages and real-time monitoring of food freshness based on a hydrogel tag were also validated for reference. Prospectively, deep learning-assisted creation of proportional sensors will be critical to increasing the diversity and high throughput of real-time monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
怡然夏菡完成签到,获得积分10
1秒前
克里斯发布了新的文献求助10
1秒前
kk完成签到,获得积分10
1秒前
怪兽打奥特曼完成签到,获得积分10
1秒前
Ava应助tsuki采纳,获得10
2秒前
fhkq完成签到,获得积分10
2秒前
2秒前
传奇3应助Gagaga采纳,获得10
2秒前
2秒前
123lx发布了新的文献求助10
3秒前
顾矜应助hehexi采纳,获得10
3秒前
3秒前
Essiemmm发布了新的文献求助10
4秒前
科研鼠完成签到 ,获得积分10
4秒前
贪玩晶发布了新的文献求助10
4秒前
5秒前
程绪洋发布了新的文献求助10
5秒前
zhangfugui应助HUangg采纳,获得10
5秒前
在水一方应助12345采纳,获得10
5秒前
6秒前
6秒前
锣大炮发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
成亚娜完成签到,获得积分10
7秒前
Doc_d发布了新的文献求助10
8秒前
LZH应助fanfan44390采纳,获得10
9秒前
9秒前
LBH发布了新的文献求助10
10秒前
物外完成签到,获得积分10
10秒前
10秒前
陈饱饱完成签到,获得积分10
10秒前
浮游应助木头人采纳,获得10
10秒前
chuchen123发布了新的文献求助10
11秒前
11秒前
大侠王恒完成签到,获得积分10
11秒前
优雅人士关注了科研通微信公众号
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466271
求助须知:如何正确求助?哪些是违规求助? 4570197
关于积分的说明 14323735
捐赠科研通 4496698
什么是DOI,文献DOI怎么找? 2463500
邀请新用户注册赠送积分活动 1452381
关于科研通互助平台的介绍 1427516