金黄色葡萄球菌
化脓性关节炎
体内
细胞内
微生物学
关节炎
葡萄球菌
葡萄球菌感染
类风湿性关节炎
细菌
化学
生物
免疫学
生物化学
遗传学
生物技术
作者
Jean-Baptiste Mascary,Valérie Bordeau,Irène Nicolas,Marie‐Clémence Verdier,Pierre Rocheteau,Vincent Cattoir
标识
DOI:10.1093/jacamr/dlae025
摘要
Abstract Objectives Assessing the therapeutic potential of a novel antimicrobial pseudopeptide, Pep16, both in vitro and in vivo for the treatment of septic arthritis caused by Staphylococcus aureus. Methods Seven clinical isolates of S. aureus (two MRSA and five MSSA) were studied. MICs of Pep16 and comparators (vancomycin, teicoplanin, daptomycin and levofloxacin) were determined through the broth microdilution method. The intracellular activity of Pep16 and levofloxacin was assessed in two models of infection using non-professional (osteoblasts MG-63) or professional (macrophages THP-1) phagocytic cells. A mouse model of septic arthritis was used to evaluate the in vivo efficacy of Pep16 and vancomycin. A preliminary pharmacokinetic (PK) analysis was performed by measuring plasma concentrations using LC-MS/MS following a single subcutaneous injection of Pep16 (10 mg/kg). Results MICs of Pep16 were consistently at 8 mg/L for all clinical isolates of S. aureus (2- to 32-fold higher to those of comparators) while MBC/MIC ratios confirmed its bactericidal activity. Both Pep16 and levofloxacin (when used at 2 × MIC) significantly reduced the bacterial load of all tested isolates (two MSSA and two MRSA) within both osteoblasts and macrophages. In MSSA-infected mice, Pep16 demonstrated a significant (∼10-fold) reduction on bacterial loads in knee joints. PK analysis following a single subcutaneous administration of Pep16 revealed a gradual increase in plasma concentrations, reaching a peak of 5.6 mg/L at 12 h. Conclusions Pep16 is a promising option for the treatment of septic arthritis due to S. aureus, particularly owing to its robust intracellular activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI