Shortwave infrared and visible light image fusion method based on dual discriminator GAN

鉴别器 稳健性(进化) 图像融合 夜视 图像(数学) 遥感 计算机科学 电信 人工智能 地质学 基因 化学 生物化学 探测器
作者
P. C. Huang,Xiaojie Liu,Shuang Zhao,Ruirui Ma,Hao Dong,Chenguang Wang,Huiliang Cao,Chong Shen
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (3): 036005-036005
标识
DOI:10.1088/1402-4896/ad2328
摘要

Abstract In a tactical warfare setting, the efficacy of target detection becomes profoundly compromised due to prevalent environmental factors such as smoke, dust, and atmospheric interference. Such impediments invariably undermine the precision and reliability of identifying pivotal targets, thereby precipitating potentially dire ramifications. Remarkably, short-wave infrared technology has exhibited unparalleled proficiency in elucidating target attributes even amidst challenging conditions characterized by smoke, fog, or haze. Against this backdrop, the present study delineates a pioneering algorithmic framework that seamlessly amalgamates the imperatives of image registration and fusion. This is achieved through the deployment of an advanced dual-discriminator Generative Adversarial Network (GAN), specifically tailored for amalgamating short-wave infrared and visible light imagery within smoke-obscured contexts. Our methodology commences with the introduction of an augmented Speeded-Up Robust Features (SURF) algorithm, meticulously designed to rectify inherent misalignments within the input imagery. Subsequent enhancements encompass the refinement of the generator’s loss function and the integration of a multi-scale convolutional kernel, thereby facilitating the extraction and amalgamation of a more expansive array of salient features. This concerted effort culminates in the elevation of image fusion quality. To corroborate the efficacy and robustness of our proposed framework, rigorous validation procedures were conducted utilizing a meticulously curated dataset comprising short-wave infrared and visible light images. Empirical evaluations, encompassing both subjective and objective comparative analyses, unequivocally affirm the superior performance metrics of our fusion network. Specifically, our methodology surpasses alternative fusion techniques across multiple dimensions, including visual fidelity, perceptual quality, and structural congruence of synthesized images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Lucas应助星空采纳,获得10
3秒前
金金完成签到,获得积分10
3秒前
4秒前
也快乐完成签到,获得积分10
4秒前
Wsyyy发布了新的文献求助10
4秒前
一切都会好起来的完成签到,获得积分10
5秒前
Pendulium发布了新的文献求助10
5秒前
嘿嘿发布了新的文献求助30
5秒前
kkPi发布了新的文献求助10
6秒前
6秒前
Fortune完成签到,获得积分20
7秒前
7秒前
biuesky完成签到,获得积分10
7秒前
Leoniko完成签到 ,获得积分10
8秒前
也快乐发布了新的文献求助10
10秒前
10秒前
研友_yLpQrn完成签到,获得积分10
11秒前
11秒前
tuao234应助金金采纳,获得20
12秒前
大力翠阳完成签到,获得积分10
12秒前
Mlwwq发布了新的文献求助10
13秒前
14秒前
bkagyin应助郑方形采纳,获得30
14秒前
舒克发布了新的文献求助10
15秒前
Jasper应助木棉哆哆采纳,获得10
16秒前
Nathan完成签到,获得积分10
17秒前
会做饭的才是好厨子完成签到 ,获得积分10
17秒前
打打应助wenge采纳,获得10
17秒前
刘一一发布了新的文献求助10
17秒前
蓦然回首应助ZCX采纳,获得10
18秒前
共享精神应助杨苗苗采纳,获得10
18秒前
19秒前
邓豪完成签到 ,获得积分10
19秒前
科研通AI2S应助星星收藏家采纳,获得10
19秒前
伍豪完成签到 ,获得积分10
21秒前
打打应助Asteroid采纳,获得30
21秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593807
求助须知:如何正确求助?哪些是违规求助? 4679604
关于积分的说明 14810996
捐赠科研通 4644973
什么是DOI,文献DOI怎么找? 2534682
邀请新用户注册赠送积分活动 1502730
关于科研通互助平台的介绍 1469383