Curriculum learning-based domain generalization for cross-domain fault diagnosis with category shift

一般化 领域(数学分析) 计算机科学 断层(地质) 人工智能 模式识别(心理学) 机器学习 数学 地质学 数学分析 地震学
作者
Yu Wang,Jie Gao,Wei Wang,Xu Yang,Jinsong Du
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:212: 111295-111295 被引量:23
标识
DOI:10.1016/j.ymssp.2024.111295
摘要

Intelligent fault diagnosis has witnessed significant advancements in the preceding years. Domain generalization-based methods can effectively alleviate the domain shift problem and be employ for fault diagnosis in unknown domains. Apart from the problem of domain shift, another challenge arises from the incomplete label space of each source domain due to the difficulty of data acquisition. Category shift can have a significant impact on the subsequent application of intelligent algorithms. To confront this more challenging and practical problem, we begin by formulating the setting of domain generalization with category shift. This paper proposes a Curriculum Learning-based Domain Generalization method (CLDG) to tackle with the intricate problem. The basic network consists of a feature extractor, a mixup-based reciprocal point learning classifier for tackling the category shift between the source and target domains, and a conditional domain discriminator for addressing the domain shift. In addition, we construct a curriculum learning strategy that uses the knowledge of categories with high observation degree to assist in extracting domain invariant features of lower ones, dealing with the category shift between the source domains and improving the generalization ability of the categorical information. Extensive experimental results on two datasets provide evidence for the effectiveness and superiority of the proposed algorithm in classifying known and missing classes in each source domain, as well as identifying unobserved failure modes in unknown target domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丸橙发布了新的文献求助10
2秒前
qqqq发布了新的文献求助10
2秒前
2秒前
dameng完成签到 ,获得积分10
2秒前
小八统治世界完成签到,获得积分10
3秒前
愉快无施发布了新的文献求助30
3秒前
3秒前
4秒前
5秒前
科研通AI6应助Kevin63采纳,获得10
6秒前
k_1发布了新的文献求助10
6秒前
饼干吃土豆关注了科研通微信公众号
6秒前
7秒前
dong发布了新的文献求助10
8秒前
方法发布了新的文献求助10
9秒前
破天富贵玩命追我完成签到 ,获得积分10
9秒前
赘婿应助门小楠采纳,获得10
9秒前
科研通AI6应助Janisa采纳,获得30
10秒前
11秒前
昂口3完成签到 ,获得积分10
11秒前
感性的含灵完成签到,获得积分10
12秒前
FashionBoy应助lurongjun采纳,获得10
12秒前
Akim应助老仙翁采纳,获得10
13秒前
Akim应助k_1采纳,获得10
13秒前
liujingyi完成签到,获得积分10
13秒前
14秒前
研友_VZG7GZ应助ODD采纳,获得10
14秒前
明明千岁千岁千千岁完成签到 ,获得积分10
14秒前
15秒前
17秒前
JamesPei应助dong采纳,获得10
17秒前
Ryne发布了新的文献求助20
17秒前
18秒前
负责的流沙完成签到 ,获得积分10
18秒前
19秒前
19秒前
Ava应助别说话采纳,获得10
19秒前
19秒前
20秒前
华仔应助大林采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577556
求助须知:如何正确求助?哪些是违规求助? 4662649
关于积分的说明 14742832
捐赠科研通 4603346
什么是DOI,文献DOI怎么找? 2526283
邀请新用户注册赠送积分活动 1496084
关于科研通互助平台的介绍 1465546