Curriculum learning-based domain generalization for cross-domain fault diagnosis with category shift

一般化 领域(数学分析) 计算机科学 断层(地质) 人工智能 模式识别(心理学) 机器学习 数学 地质学 数学分析 地震学
作者
Yu Wang,Jie Gao,Wei Wang,Xu Yang,Jinsong Du
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:212: 111295-111295 被引量:3
标识
DOI:10.1016/j.ymssp.2024.111295
摘要

Intelligent fault diagnosis has witnessed significant advancements in the preceding years. Domain generalization-based methods can effectively alleviate the domain shift problem and be employ for fault diagnosis in unknown domains. Apart from the problem of domain shift, another challenge arises from the incomplete label space of each source domain due to the difficulty of data acquisition. Category shift can have a significant impact on the subsequent application of intelligent algorithms. To confront this more challenging and practical problem, we begin by formulating the setting of domain generalization with category shift. This paper proposes a Curriculum Learning-based Domain Generalization method (CLDG) to tackle with the intricate problem. The basic network consists of a feature extractor, a mixup-based reciprocal point learning classifier for tackling the category shift between the source and target domains, and a conditional domain discriminator for addressing the domain shift. In addition, we construct a curriculum learning strategy that uses the knowledge of categories with high observation degree to assist in extracting domain invariant features of lower ones, dealing with the category shift between the source domains and improving the generalization ability of the categorical information. Extensive experimental results on two datasets provide evidence for the effectiveness and superiority of the proposed algorithm in classifying known and missing classes in each source domain, as well as identifying unobserved failure modes in unknown target domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李萍萍发布了新的文献求助10
3秒前
瓜皮糖浆完成签到,获得积分10
3秒前
开放的惜梦完成签到 ,获得积分10
3秒前
4秒前
4秒前
科研通AI5应助良辰在北采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
nimii完成签到,获得积分10
7秒前
开放的惜梦关注了科研通微信公众号
8秒前
8秒前
。?。发布了新的文献求助10
9秒前
科研通AI5应助李茶嘚采纳,获得10
10秒前
顾矜应助blooming boy采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
嵇老五发布了新的文献求助100
15秒前
17秒前
17秒前
Grayball应助kkk采纳,获得10
17秒前
19秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
AU发布了新的文献求助10
23秒前
四季刻歌发布了新的文献求助10
24秒前
李茶嘚发布了新的文献求助10
24秒前
张zzz完成签到,获得积分10
25秒前
科研通AI5应助HeyHsc采纳,获得10
26秒前
汐尘完成签到,获得积分10
26秒前
yi发布了新的文献求助10
26秒前
黄石发布了新的文献求助10
26秒前
Sue完成签到,获得积分10
27秒前
汉堡包应助Xiaomeng采纳,获得10
29秒前
30秒前
非斐完成签到,获得积分10
30秒前
31秒前
上官若男应助。?。采纳,获得10
31秒前
科研通AI2S应助向秋采纳,获得10
32秒前
annzl发布了新的文献求助10
32秒前
桐桐应助黄石采纳,获得10
32秒前
量子星尘发布了新的文献求助10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664528
求助须知:如何正确求助?哪些是违规求助? 3224505
关于积分的说明 9757908
捐赠科研通 2934419
什么是DOI,文献DOI怎么找? 1606858
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735018