Curriculum learning-based domain generalization for cross-domain fault diagnosis with category shift

一般化 领域(数学分析) 计算机科学 断层(地质) 人工智能 模式识别(心理学) 机器学习 数学 地质学 数学分析 地震学
作者
Yu Wang,Jie Gao,Wei Wang,Xu Yang,Jinsong Du
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:212: 111295-111295 被引量:23
标识
DOI:10.1016/j.ymssp.2024.111295
摘要

Intelligent fault diagnosis has witnessed significant advancements in the preceding years. Domain generalization-based methods can effectively alleviate the domain shift problem and be employ for fault diagnosis in unknown domains. Apart from the problem of domain shift, another challenge arises from the incomplete label space of each source domain due to the difficulty of data acquisition. Category shift can have a significant impact on the subsequent application of intelligent algorithms. To confront this more challenging and practical problem, we begin by formulating the setting of domain generalization with category shift. This paper proposes a Curriculum Learning-based Domain Generalization method (CLDG) to tackle with the intricate problem. The basic network consists of a feature extractor, a mixup-based reciprocal point learning classifier for tackling the category shift between the source and target domains, and a conditional domain discriminator for addressing the domain shift. In addition, we construct a curriculum learning strategy that uses the knowledge of categories with high observation degree to assist in extracting domain invariant features of lower ones, dealing with the category shift between the source domains and improving the generalization ability of the categorical information. Extensive experimental results on two datasets provide evidence for the effectiveness and superiority of the proposed algorithm in classifying known and missing classes in each source domain, as well as identifying unobserved failure modes in unknown target domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柳柳发布了新的文献求助10
1秒前
1403912262发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
锦慜发布了新的文献求助10
2秒前
Endless完成签到,获得积分10
3秒前
深情安青应助凡人烦事采纳,获得10
4秒前
4秒前
SY15732023811完成签到 ,获得积分10
4秒前
4秒前
5秒前
不配.应助合适夏天采纳,获得200
5秒前
6秒前
陈总留下了新的社区评论
7秒前
7秒前
tiam发布了新的文献求助10
7秒前
star应助这道题没有解采纳,获得10
7秒前
领导范儿应助健壮的半青采纳,获得10
8秒前
等待兔子给等待兔子的求助进行了留言
9秒前
Qi完成签到 ,获得积分10
9秒前
9秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
11秒前
SJJ应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
11秒前
和谐青柏应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
spc68应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
niNe3YUE应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
和谐青柏应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646