Curriculum learning-based domain generalization for cross-domain fault diagnosis with category shift

一般化 领域(数学分析) 计算机科学 断层(地质) 人工智能 模式识别(心理学) 机器学习 数学 地质学 数学分析 地震学
作者
Yu Wang,Jie Gao,Wei Wang,Xu Yang,Jinsong Du
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:212: 111295-111295 被引量:14
标识
DOI:10.1016/j.ymssp.2024.111295
摘要

Intelligent fault diagnosis has witnessed significant advancements in the preceding years. Domain generalization-based methods can effectively alleviate the domain shift problem and be employ for fault diagnosis in unknown domains. Apart from the problem of domain shift, another challenge arises from the incomplete label space of each source domain due to the difficulty of data acquisition. Category shift can have a significant impact on the subsequent application of intelligent algorithms. To confront this more challenging and practical problem, we begin by formulating the setting of domain generalization with category shift. This paper proposes a Curriculum Learning-based Domain Generalization method (CLDG) to tackle with the intricate problem. The basic network consists of a feature extractor, a mixup-based reciprocal point learning classifier for tackling the category shift between the source and target domains, and a conditional domain discriminator for addressing the domain shift. In addition, we construct a curriculum learning strategy that uses the knowledge of categories with high observation degree to assist in extracting domain invariant features of lower ones, dealing with the category shift between the source domains and improving the generalization ability of the categorical information. Extensive experimental results on two datasets provide evidence for the effectiveness and superiority of the proposed algorithm in classifying known and missing classes in each source domain, as well as identifying unobserved failure modes in unknown target domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水芸完成签到,获得积分10
刚刚
EDW完成签到 ,获得积分10
1秒前
1秒前
2秒前
上官若男应助17采纳,获得10
3秒前
黄磊发布了新的文献求助10
4秒前
134应助胡萝卜z采纳,获得20
4秒前
5秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
wlq完成签到,获得积分10
6秒前
辞镜若鱼完成签到,获得积分10
7秒前
小杭76发布了新的文献求助10
7秒前
sqw完成签到,获得积分10
8秒前
xxfsx应助初昀杭采纳,获得10
8秒前
8秒前
甜蜜香魔关注了科研通微信公众号
9秒前
赘婿应助平淡树叶采纳,获得10
11秒前
11秒前
慕青应助袁琴采纳,获得10
12秒前
111111111完成签到,获得积分10
12秒前
圣斗士完成签到,获得积分10
13秒前
坚定晓兰应助慈祥的惜霜采纳,获得10
13秒前
昵称什么的不重要啦完成签到 ,获得积分10
14秒前
kk发布了新的文献求助10
14秒前
AugustWong完成签到,获得积分10
15秒前
健康的小鸽子完成签到 ,获得积分10
15秒前
15秒前
晓晓晓朋友完成签到,获得积分10
16秒前
情怀应助酷拉皮卡采纳,获得10
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
19秒前
Nancy完成签到,获得积分10
19秒前
方yc完成签到,获得积分10
19秒前
cardioJA发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474258
求助须知:如何正确求助?哪些是违规求助? 4576037
关于积分的说明 14356246
捐赠科研通 4503903
什么是DOI,文献DOI怎么找? 2467852
邀请新用户注册赠送积分活动 1455603
关于科研通互助平台的介绍 1429618