Curriculum learning-based domain generalization for cross-domain fault diagnosis with category shift

一般化 领域(数学分析) 计算机科学 断层(地质) 人工智能 模式识别(心理学) 机器学习 数学 地质学 数学分析 地震学
作者
Yu Wang,Jie Gao,Wei Wang,Xu Yang,Jinsong Du
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:212: 111295-111295 被引量:9
标识
DOI:10.1016/j.ymssp.2024.111295
摘要

Intelligent fault diagnosis has witnessed significant advancements in the preceding years. Domain generalization-based methods can effectively alleviate the domain shift problem and be employ for fault diagnosis in unknown domains. Apart from the problem of domain shift, another challenge arises from the incomplete label space of each source domain due to the difficulty of data acquisition. Category shift can have a significant impact on the subsequent application of intelligent algorithms. To confront this more challenging and practical problem, we begin by formulating the setting of domain generalization with category shift. This paper proposes a Curriculum Learning-based Domain Generalization method (CLDG) to tackle with the intricate problem. The basic network consists of a feature extractor, a mixup-based reciprocal point learning classifier for tackling the category shift between the source and target domains, and a conditional domain discriminator for addressing the domain shift. In addition, we construct a curriculum learning strategy that uses the knowledge of categories with high observation degree to assist in extracting domain invariant features of lower ones, dealing with the category shift between the source domains and improving the generalization ability of the categorical information. Extensive experimental results on two datasets provide evidence for the effectiveness and superiority of the proposed algorithm in classifying known and missing classes in each source domain, as well as identifying unobserved failure modes in unknown target domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助奔波儿灞采纳,获得10
刚刚
活泼的问夏完成签到,获得积分10
刚刚
CipherSage应助105400155采纳,获得10
刚刚
pdf发布了新的文献求助30
1秒前
完美世界应助燕子采纳,获得10
1秒前
2秒前
2秒前
微笑海冬完成签到,获得积分10
2秒前
lisier发布了新的文献求助10
2秒前
路遥完成签到,获得积分20
2秒前
脑洞疼应助alan采纳,获得10
2秒前
3秒前
Shirely完成签到,获得积分10
3秒前
洁净春天完成签到,获得积分10
4秒前
SYLH应助aa121599采纳,获得10
4秒前
HPP123完成签到,获得积分10
4秒前
胡柱柱完成签到,获得积分10
4秒前
冷艳的火龙果完成签到,获得积分10
5秒前
ee发布了新的文献求助10
6秒前
6秒前
桃子应助鹿多多采纳,获得10
6秒前
Akim应助吃点红糖馒头采纳,获得10
6秒前
李爱国应助正丁基锂采纳,获得10
6秒前
归尘发布了新的文献求助10
7秒前
7秒前
7秒前
胡柱柱发布了新的文献求助10
7秒前
Orange应助1235采纳,获得10
8秒前
Shirely发布了新的文献求助10
8秒前
8秒前
pdf完成签到,获得积分20
8秒前
桐桐应助Judy采纳,获得10
9秒前
wanci应助姜莹采纳,获得10
9秒前
9秒前
迷路水池完成签到,获得积分10
9秒前
沉溺完成签到,获得积分10
9秒前
bonnie发布了新的文献求助10
10秒前
豆豆发布了新的文献求助10
10秒前
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023175
求助须知:如何正确求助?哪些是违规求助? 3563272
关于积分的说明 11341846
捐赠科研通 3294815
什么是DOI,文献DOI怎么找? 1814780
邀请新用户注册赠送积分活动 889460
科研通“疑难数据库(出版商)”最低求助积分说明 812964