基础(证据)
特征(语言学)
嵌入
计算机科学
人工智能
地理
语言学
哲学
考古
作者
Wenhao Tang,Fengtao Zhou,Sheng Huang,Xiang Zhu,Yi Zhang,Bo Liu
出处
期刊:Cornell University - arXiv
日期:2024-02-27
标识
DOI:10.48550/arxiv.2402.17228
摘要
Multiple instance learning (MIL) is the most widely used framework in computational pathology, encompassing sub-typing, diagnosis, prognosis, and more. However, the existing MIL paradigm typically requires an offline instance feature extractor, such as a pre-trained ResNet or a foundation model. This approach lacks the capability for feature fine-tuning within the specific downstream tasks, limiting its adaptability and performance. To address this issue, we propose a Re-embedded Regional Transformer (R$^2$T) for re-embedding the instance features online, which captures fine-grained local features and establishes connections across different regions. Unlike existing works that focus on pre-training powerful feature extractor or designing sophisticated instance aggregator, R$^2$T is tailored to re-embed instance features online. It serves as a portable module that can seamlessly integrate into mainstream MIL models. Extensive experimental results on common computational pathology tasks validate that: 1) feature re-embedding improves the performance of MIL models based on ResNet-50 features to the level of foundation model features, and further enhances the performance of foundation model features; 2) the R$^2$T can introduce more significant performance improvements to various MIL models; 3) R$^2$T-MIL, as an R$^2$T-enhanced AB-MIL, outperforms other latest methods by a large margin. The code is available at:~\href{https://github.com/DearCaat/RRT-MIL}{https://github.com/DearCaat/RRT-MIL}.
科研通智能强力驱动
Strongly Powered by AbleSci AI