Development of a Machine-Learning Model for Anterior Knee Pain After Total Knee Arthroplasty With Patellar Preservation Using Radiological Variables

放射性武器 冠状面 医学 外翻 矢状面 外科 口腔正畸科 放射科
作者
Maximiliano Barahona,Mauricio Guzmán,Sebastian Cartes,Agustín Arancibia,Javier E Mora,Macarena Barahona,Daniel González Palma,Jaime Hinzpeter,C Infante,Cristián Barrientos
出处
期刊:Journal of Arthroplasty [Elsevier]
被引量:1
标识
DOI:10.1016/j.arth.2024.02.006
摘要

Abstract

Background

Anterior knee pain (AKP) following total knee arthroplasty (TKA) with patellar preservation is a common complication that significantly affects patients' quality of life. This study aimed to develop a machine learning model to predict the likelihood of developing AKP after TKA using radiological variables.

Methods

A cohort of 131 anterior stabilized TKA cases (105 patients) without patellar resurfacing was included. Patients underwent a follow-up evaluation with a minimum one-year follow-up. The primary outcome was AKP, and radiological measurements were used as predictor variables. There were two observers who made the radiological measurement, which included lower limb dysmetria, joint space, and coronal, sagittal, and axial alignment. Machine learning models were applied to predict AKP. The best-performing model was selected based on accuracy, precision, sensitivity, specificity, and Kappa statistics. Python 3.11 with Pandas and PyCaret libraries were used for analysis.

Results

A total of 35 TKA had AKP (26.7%). Patient-reported outcomes were significantly better in the patients who did not have AKP. The Gradient Boosting Classifier (GBC) performed best for both observers, achieving an area under the curve (AUC) of 0.9261 and 0.9164, respectively. The mechanical tibial slope was the most important variable for predicting AKP. The Shapley test indicated that high/low mechanical tibial slope, a shorter operated leg, a valgus coronal alignment, and excessive patellar tilt increased AKP risk.

Conclusions

The results suggest that global alignment, including sagittal, coronal, and axial alignment, is relevant in predicting AKP after TKA. These findings provide valuable insights for optimizing TKA outcomes and reducing the incidence of AKP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yana1311完成签到,获得积分10
1秒前
lkc发布了新的文献求助10
1秒前
大气飞丹完成签到 ,获得积分10
1秒前
调研昵称发布了新的文献求助10
1秒前
yu完成签到 ,获得积分10
2秒前
Lvj发布了新的文献求助10
2秒前
英俊的铭应助lanjq兰坚强采纳,获得10
3秒前
123发布了新的文献求助10
3秒前
含蓄的鹤发布了新的文献求助10
3秒前
3秒前
受伤访波完成签到,获得积分10
4秒前
香蕉觅云应助亻鱼采纳,获得10
4秒前
欢欢发布了新的文献求助10
4秒前
慕青应助研友_Z1WvKL采纳,获得10
4秒前
4秒前
多情怜蕾完成签到,获得积分10
5秒前
5秒前
AD发布了新的文献求助10
6秒前
谢朝邦发布了新的文献求助10
6秒前
科研通AI5应助玲珑油豆腐采纳,获得10
6秒前
6秒前
wjh发布了新的文献求助10
6秒前
Lucky完成签到,获得积分10
7秒前
谨慎涵柏发布了新的文献求助10
7秒前
SciGPT应助心灵美发卡采纳,获得10
7秒前
彩色的蓝天完成签到,获得积分10
7秒前
hbb发布了新的文献求助10
7秒前
3137874883发布了新的文献求助10
9秒前
蒋若风发布了新的文献求助10
9秒前
123完成签到,获得积分10
9秒前
狗剩子完成签到,获得积分10
9秒前
Lvj完成签到,获得积分10
10秒前
bkagyin应助马保国123采纳,获得10
10秒前
10秒前
11秒前
大个应助乐观的幼珊采纳,获得10
11秒前
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759