Development of a Machine-Learning Model for Anterior Knee Pain After Total Knee Arthroplasty With Patellar Preservation Using Radiological Variables

放射性武器 冠状面 医学 外翻 矢状面 外科 口腔正畸科 放射科
作者
Maximiliano Barahona,Mauricio Guzmán,Sebastian Cartes,Agustín Arancibia,Javier E Mora,Macarena Barahona,Daniel González Palma,Jaime Hinzpeter,C Infante,Cristián Barrientos
出处
期刊:Journal of Arthroplasty [Elsevier]
被引量:1
标识
DOI:10.1016/j.arth.2024.02.006
摘要

Abstract

Background

Anterior knee pain (AKP) following total knee arthroplasty (TKA) with patellar preservation is a common complication that significantly affects patients' quality of life. This study aimed to develop a machine learning model to predict the likelihood of developing AKP after TKA using radiological variables.

Methods

A cohort of 131 anterior stabilized TKA cases (105 patients) without patellar resurfacing was included. Patients underwent a follow-up evaluation with a minimum one-year follow-up. The primary outcome was AKP, and radiological measurements were used as predictor variables. There were two observers who made the radiological measurement, which included lower limb dysmetria, joint space, and coronal, sagittal, and axial alignment. Machine learning models were applied to predict AKP. The best-performing model was selected based on accuracy, precision, sensitivity, specificity, and Kappa statistics. Python 3.11 with Pandas and PyCaret libraries were used for analysis.

Results

A total of 35 TKA had AKP (26.7%). Patient-reported outcomes were significantly better in the patients who did not have AKP. The Gradient Boosting Classifier (GBC) performed best for both observers, achieving an area under the curve (AUC) of 0.9261 and 0.9164, respectively. The mechanical tibial slope was the most important variable for predicting AKP. The Shapley test indicated that high/low mechanical tibial slope, a shorter operated leg, a valgus coronal alignment, and excessive patellar tilt increased AKP risk.

Conclusions

The results suggest that global alignment, including sagittal, coronal, and axial alignment, is relevant in predicting AKP after TKA. These findings provide valuable insights for optimizing TKA outcomes and reducing the incidence of AKP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢黑米完成签到,获得积分10
刚刚
kp完成签到,获得积分10
刚刚
浅眸流年完成签到,获得积分10
刚刚
陈思发布了新的文献求助10
1秒前
1秒前
小青椒应助MAIA采纳,获得150
1秒前
深情安青应助缓慢的藏鸟采纳,获得10
2秒前
gfjh发布了新的文献求助10
2秒前
qiuwuji完成签到 ,获得积分10
3秒前
cssfsa发布了新的文献求助100
6秒前
tanshy完成签到,获得积分10
7秒前
ding应助林狗采纳,获得10
8秒前
Suliove发布了新的文献求助10
8秒前
研友_VZG7GZ应助TiAmo采纳,获得10
8秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
跳跃的翼完成签到,获得积分10
11秒前
12秒前
情怀应助梁辉采纳,获得10
12秒前
乙醇完成签到 ,获得积分10
12秒前
浮游应助超帅从彤采纳,获得10
13秒前
13秒前
linlin发布了新的文献求助10
14秒前
脑洞疼应助着急的寒天采纳,获得10
14秒前
笃定完成签到,获得积分10
14秒前
赵yy应助子清采纳,获得10
15秒前
菜菜就爱玩完成签到,获得积分10
15秒前
欣喜依白完成签到,获得积分10
15秒前
小周发布了新的文献求助10
15秒前
脑洞疼应助cssfsa采纳,获得10
16秒前
replica完成签到,获得积分10
16秒前
诸茹嫣发布了新的文献求助10
17秒前
yy发布了新的文献求助10
18秒前
19秒前
沉默南露发布了新的文献求助30
19秒前
20秒前
21秒前
22秒前
Ray羽曦~完成签到,获得积分10
22秒前
HFan发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424545
求助须知:如何正确求助?哪些是违规求助? 4538904
关于积分的说明 14164157
捐赠科研通 4455851
什么是DOI,文献DOI怎么找? 2443924
邀请新用户注册赠送积分活动 1435060
关于科研通互助平台的介绍 1412438