Development of a Machine-Learning Model for Anterior Knee Pain After Total Knee Arthroplasty With Patellar Preservation Using Radiological Variables

放射性武器 冠状面 医学 外翻 矢状面 外科 口腔正畸科 放射科
作者
Maximiliano Barahona,Mauricio Guzmán,Sebastian Cartes,Andrés E Arancibia,Javier E Mora,Macarena Barahona,Daniel González Palma,Jaime Hinzpeter,C Infante,Cristián Barrientos
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:39 (9): S171-S178 被引量:4
标识
DOI:10.1016/j.arth.2024.02.006
摘要

Abstract

Background

Anterior knee pain (AKP) following total knee arthroplasty (TKA) with patellar preservation is a common complication that significantly affects patients' quality of life. This study aimed to develop a machine learning model to predict the likelihood of developing AKP after TKA using radiological variables.

Methods

A cohort of 131 anterior stabilized TKA cases (105 patients) without patellar resurfacing was included. Patients underwent a follow-up evaluation with a minimum one-year follow-up. The primary outcome was AKP, and radiological measurements were used as predictor variables. There were two observers who made the radiological measurement, which included lower limb dysmetria, joint space, and coronal, sagittal, and axial alignment. Machine learning models were applied to predict AKP. The best-performing model was selected based on accuracy, precision, sensitivity, specificity, and Kappa statistics. Python 3.11 with Pandas and PyCaret libraries were used for analysis.

Results

A total of 35 TKA had AKP (26.7%). Patient-reported outcomes were significantly better in the patients who did not have AKP. The Gradient Boosting Classifier (GBC) performed best for both observers, achieving an area under the curve (AUC) of 0.9261 and 0.9164, respectively. The mechanical tibial slope was the most important variable for predicting AKP. The Shapley test indicated that high/low mechanical tibial slope, a shorter operated leg, a valgus coronal alignment, and excessive patellar tilt increased AKP risk.

Conclusions

The results suggest that global alignment, including sagittal, coronal, and axial alignment, is relevant in predicting AKP after TKA. These findings provide valuable insights for optimizing TKA outcomes and reducing the incidence of AKP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Bao_o_o发布了新的文献求助10
1秒前
迷路的问蕊完成签到,获得积分20
1秒前
团结友爱发布了新的文献求助10
2秒前
盐烤香鱼完成签到,获得积分10
2秒前
2秒前
Orange应助Alex采纳,获得10
3秒前
nnnn应助wuchun采纳,获得20
3秒前
3秒前
3秒前
3秒前
今后应助等待的凌晴采纳,获得30
4秒前
毛彬发布了新的文献求助10
4秒前
酷酷的起眸完成签到,获得积分20
4秒前
NexusExplorer应助hooke采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
科研通AI6应助口天吴采纳,获得10
6秒前
6秒前
6秒前
壮观晓博发布了新的文献求助10
7秒前
泰想成功发布了新的文献求助10
7秒前
yahaha完成签到,获得积分10
7秒前
7秒前
7秒前
1592611829完成签到,获得积分10
7秒前
TOMORROW完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
今后应助yoyo采纳,获得10
8秒前
落后的哈密瓜完成签到,获得积分10
8秒前
9秒前
FashionBoy应助倪13采纳,获得10
9秒前
mht发布了新的文献求助10
10秒前
深情安青应助luoyulin采纳,获得10
10秒前
滴滴答答发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791