Monodisperse Sea-Urchin-like Nanodendrites and Nanoparticles of Multicomponent Pd-Based Alloys for Enhanced C2 Alcohol Oxidation Activity

分散性 纳米颗粒 海胆 材料科学 化学工程 纳米技术 化学 有机化学 高分子化学 地质学 工程类 古生物学
作者
Xianzhuo Lao,Xingxue Zhang,Tong Sun,Aiping Fu,Yuxiang Zhang,Ze Li,Likang Yang,Chen Chen,Xiaozhou Liao,Jiasheng Wang,Wanneng Ye,Peizhi Guo
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (4): 2124-2137 被引量:2
标识
DOI:10.1021/acs.chemmater.3c03291
摘要

Simultaneous regulation of the morphology and electronic properties of precious metals is essential to achieve satisfactory energy-related electrocatalytic reactions. Herein, we synthesize a class of monodisperse sea-urchin-like nanodendrites (NDs) and monodisperse nanoparticles (NPs) of unary Pd, binary PdM, and ternary PdPbM alloys with face-centered cubic structures in a general way for the ethanol oxidation reaction (EOR), where the morphologies and sizes of two kinds of nanocrystals can be interconverted by changing the solvent (oleylamine/N,N-dimethylformamide, DMF) under the same condition. Interestingly, unveiling the synergistic effect (strain effect and ligand effect) and electronic properties (d-band center) has been proven to learn the mechanism for enhanced electrocatalytic activity. Benefiting from the as-made sea-urchin-like PdPbAg NDs with a tensile strain value of 3.75%, the nanocrystals exhibit excellent electrocatalytic activity in both experiments and theoretical calculations. Also, the sea-urchin-like PdPbAg NDs can serve as an efficient electrocatalyst for the electrochemical alcohol oxidation of methanol, ethylene glycol, and glycerol. This study reports a facile way of constructing monodisperse sea-urchin-like NDs and monodisperse NPs of unary metals and binary/ternary alloys, providing a novel strategy for constructing 3D anisotropic and high-efficiency electrocatalysts, and also offers a deep understanding of lattice engineering and electronic properties with promising applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噗哈哈完成签到 ,获得积分10
1秒前
2秒前
3秒前
夏眠完成签到,获得积分20
4秒前
lin应助volvoamg采纳,获得10
6秒前
FashionBoy应助喜悦岱周采纳,获得30
7秒前
mfy发布了新的文献求助10
7秒前
夏北岛关注了科研通微信公众号
8秒前
傻妞完成签到,获得积分10
9秒前
MinQi发布了新的文献求助10
9秒前
无心的文龙完成签到,获得积分10
9秒前
小平应助淡然的宛秋采纳,获得20
10秒前
11秒前
共享精神应助感动一江采纳,获得30
12秒前
12秒前
躺平摆烂小饼干完成签到,获得积分10
13秒前
夏眠发布了新的文献求助10
13秒前
英俊的铭应助霜揽月采纳,获得10
15秒前
mo完成签到,获得积分10
16秒前
gj2221423发布了新的文献求助10
16秒前
LiushengCUI完成签到,获得积分10
17秒前
1157588380完成签到,获得积分10
17秒前
木子李完成签到,获得积分10
17秒前
19秒前
bkagyin应助Newky采纳,获得10
22秒前
一蓑烟雨任平生应助Who采纳,获得10
24秒前
25秒前
甲基醚发布了新的文献求助10
26秒前
薇儿发布了新的文献求助20
26秒前
丘比特应助mfy采纳,获得10
26秒前
领导范儿应助青梅煮酒采纳,获得10
29秒前
29秒前
体贴幼晴发布了新的文献求助10
30秒前
30秒前
周媛媛完成签到,获得积分10
30秒前
李健应助hanyang965采纳,获得10
30秒前
我爱学习完成签到 ,获得积分10
32秒前
奋斗的凝冬完成签到,获得积分10
33秒前
Galaxy发布了新的文献求助30
33秒前
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310539
求助须知:如何正确求助?哪些是违规求助? 2943392
关于积分的说明 8514589
捐赠科研通 2618688
什么是DOI,文献DOI怎么找? 1431326
科研通“疑难数据库(出版商)”最低求助积分说明 664442
邀请新用户注册赠送积分活动 649626