Use of MRI-based deep learning radiomics to diagnose sacroiliitis related to axial spondyloarthritis

医学 骶髂关节炎 无线电技术 轴性脊柱炎 放射科 骶髂关节 强直性脊柱炎 磁共振成像 医学物理学 外科
作者
Ke Zhang,Chaoran Liu,Jielin Pan,Yunfei Zhu,Ximeng Li,Jing Zheng,Yingying Zhan,Wenjuan Li,Shaolin Li,Guibo Luo,Guobin Hong
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:172: 111347-111347 被引量:9
标识
DOI:10.1016/j.ejrad.2024.111347
摘要

Abstract

Objectives

This study aimed to evaluate the performance of a deep learning radiomics (DLR) model, which integrates multimodal MRI features and clinical information, in diagnosing sacroiliitis related to axial spondyloarthritis (axSpA).

Material & Methods

A total of 485 patients diagnosed with sacroiliitis related to axSpA (n = 288) or non-sacroiliitis (n = 197) by sacroiliac joint (SIJ) MRI between May 2018 and October 2022 were retrospectively included in this study. The patients were randomly divided into training (n = 388) and testing (n = 97) cohorts. Data were collected using three MRI scanners. We applied a convolutional neural network (CNN) called 3D U-Net for automated SIJ segmentation. Additionally, three CNNs (ResNet50, ResNet101, and DenseNet121) were used to diagnose axSpA-related sacroiliitis using a single modality. The prediction results of all the CNN models across different modalities were integrated using a stacking method based on different algorithms to construct ensemble models, and the optimal ensemble model was used as DLR signature. A combined model incorporating DLR signature with clinical factors was developed using multivariable logistic regression. The performance of the models was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA).

Results

Automated deep learning-based segmentation and manual delineation showed good correlation. ResNet50, as the optimal basic model, achieved an area under the curve (AUC) and accuracy of 0.839 and 0.804, respectively. The combined model yielded the highest performance in diagnosing axSpA-related sacroiliitis (AUC: 0.910; accuracy: 0.856) and outperformed the best ensemble model (AUC: 0.868; accuracy: 0.825) (all P < 0.05). Moreover, the DCA showed good clinical utility in the combined model.

Conclusion

We developed a diagnostic model for axSpA-related sacroiliitis by combining the DLR signature with clinical factors, which resulted in excellent diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaokk发布了新的文献求助10
1秒前
3秒前
桐桐应助霸气的金鱼采纳,获得10
3秒前
hhhheyyyyo完成签到,获得积分10
5秒前
aaaaaa发布了新的文献求助10
7秒前
飘逸灰狼发布了新的文献求助10
8秒前
SilvanYang应助qin采纳,获得10
8秒前
mango_发布了新的文献求助10
10秒前
香蕉觅云应助aaaaaa采纳,获得10
11秒前
111完成签到 ,获得积分10
12秒前
to高坚果发布了新的文献求助10
15秒前
华仔应助科研通管家采纳,获得10
16秒前
彳亍1117应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得20
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
彳亍1117应助科研通管家采纳,获得10
16秒前
16秒前
sunnyYUE完成签到,获得积分10
16秒前
彳亍1117应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
yydragen应助科研通管家采纳,获得30
17秒前
852应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得20
17秒前
归尘应助科研通管家采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
归尘应助科研通管家采纳,获得10
17秒前
CHENG_2025应助科研通管家采纳,获得10
17秒前
CHENG_2025应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
CodeCraft应助念姬采纳,获得10
18秒前
小胖卷毛完成签到,获得积分10
18秒前
很酷的妞子完成签到 ,获得积分10
19秒前
流动中的小孩完成签到,获得积分10
20秒前
WUWEI完成签到,获得积分10
20秒前
mango_完成签到,获得积分10
21秒前
时间地点条件完成签到,获得积分10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967152
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163524
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450