清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Use of MRI-based deep learning radiomics to diagnose sacroiliitis related to axial spondyloarthritis

医学 骶髂关节炎 人工智能 接收机工作特性 放射科 卷积神经网络 深度学习 磁共振成像 逻辑回归 机器学习 模式识别(心理学) 核医学 计算机科学 内科学
作者
Ke Zhang,Chaoran Liu,Jielin Pan,Yunfei Zhu,Ximeng Li,Jing Zheng,Yingying Zhan,Wenjuan Li,Shaolin Li,Guibo Luo,Guobin Hong
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:172: 111347-111347 被引量:2
标识
DOI:10.1016/j.ejrad.2024.111347
摘要

Abstract

Objectives

This study aimed to evaluate the performance of a deep learning radiomics (DLR) model, which integrates multimodal MRI features and clinical information, in diagnosing sacroiliitis related to axial spondyloarthritis (axSpA).

Material & Methods

A total of 485 patients diagnosed with sacroiliitis related to axSpA (n = 288) or non-sacroiliitis (n = 197) by sacroiliac joint (SIJ) MRI between May 2018 and October 2022 were retrospectively included in this study. The patients were randomly divided into training (n = 388) and testing (n = 97) cohorts. Data were collected using three MRI scanners. We applied a convolutional neural network (CNN) called 3D U-Net for automated SIJ segmentation. Additionally, three CNNs (ResNet50, ResNet101, and DenseNet121) were used to diagnose axSpA-related sacroiliitis using a single modality. The prediction results of all the CNN models across different modalities were integrated using a stacking method based on different algorithms to construct ensemble models, and the optimal ensemble model was used as DLR signature. A combined model incorporating DLR signature with clinical factors was developed using multivariable logistic regression. The performance of the models was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA).

Results

Automated deep learning-based segmentation and manual delineation showed good correlation. ResNet50, as the optimal basic model, achieved an area under the curve (AUC) and accuracy of 0.839 and 0.804, respectively. The combined model yielded the highest performance in diagnosing axSpA-related sacroiliitis (AUC: 0.910; accuracy: 0.856) and outperformed the best ensemble model (AUC: 0.868; accuracy: 0.825) (all P < 0.05). Moreover, the DCA showed good clinical utility in the combined model.

Conclusion

We developed a diagnostic model for axSpA-related sacroiliitis by combining the DLR signature with clinical factors, which resulted in excellent diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
7秒前
Richard完成签到 ,获得积分10
8秒前
9秒前
15秒前
physicalproblem完成签到,获得积分10
17秒前
22秒前
24秒前
27秒前
39秒前
紫熊发布了新的文献求助20
42秒前
陈媛发布了新的文献求助10
44秒前
47秒前
48秒前
50秒前
53秒前
54秒前
55秒前
李健应助震动的机器猫采纳,获得10
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
紫熊完成签到,获得积分10
1分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
彭于晏应助iwaljq采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139600
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795340
捐赠科研通 2446944
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176