曝气
气泡
缺氧水域
膜污染
膜生物反应器
结垢
化学
环境工程
生物反应器
制浆造纸工业
废水
膜
环境科学
环境化学
生物化学
计算机科学
有机化学
并行计算
工程类
作者
Runzhang Zuo,Dajun Ren,Yang-Fan Deng,Canhui Song,Yubin Yu,Xiejuan Lu,Feixiang Zan,Xiaohui Wu
标识
DOI:10.1016/j.jwpe.2023.104602
摘要
The high energy consumption associated with aeration, which is a widely used hydrodynamic method to mitigate membrane fouling in membrane bioreactors (MBR), poses a significant challenge to the widespread application of aerated MBR. In this study, low dissolved oxygen was applied to optimize the overall performance and reduce energy consumption in an anaerobic-anoxic-aerobic MBR (AAO-MBR) under fine and coarse bubble aeration conditions. Coarse bubble aeration exhibited better membrane fouling control, but induced releasing more proteins and polysaccharides in mixed liquor than that in fine bubble aeration. Coarse bubble aeration resulted in a decrease in the relative abundance of function bacteria, and there was a corresponding drop in enzymes involved in the nitrogen and phosphorus pathways. Furthermore, the average total specific energy demand (0.45 ± 0.02 kW·h/d) and total carbon emissions (0.32 ± 0.01 kg/d) of coarse bubble aeration was remarkably higher than that of fine bubble aeration (0.35 ± 0.01 kW·h/d and 0.25 ± 0.02 kg/d). Our results demonstrate that the fine bubble aeration in low dissolved oxygen-based AAO-MBR can optimize the overall performance and reduce energy consumption, thereby making it a more viable option for the wastewater treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI