Understanding the Heterointerfaces in Perovskite Solar Cells via Hole Selective Layer Surface Functionalization

材料科学 钙钛矿(结构) 钝化 表面改性 能量转换效率 悬空债券 光电子学 纳米技术 钙钛矿太阳能电池 光伏系统 磁滞 卤化物 带隙 图层(电子) 化学工程 无机化学 化学 电气工程 工程类 物理 量子力学
作者
Bidisha Nath,Sushant Kumar Behera,Jeykishan Kumar,Arnaud Hemmerlé,Philippe Fontaine,Praveen C. Ramamurthy,D. Roy Mahapatra,Gopalkrishna Hegde
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (5) 被引量:17
标识
DOI:10.1002/adma.202307547
摘要

Abstract Interfaces in perovskite solar cells (PSCs) play a pivotal role in determining device performance by influencing charge transport and recombination. Understanding the physical processes at these interfaces is essential for achieving high‐power conversion efficiency in PSCs. Particularly, the interfaces involving oxide‐based transport layers are susceptible to defects like dangling bonds, excess oxygen, or oxygen deficiency. To address this issue, the surface of NiO x is passivated using octadecylphosphonic acid (ODPA), resulting in improved charge transport across the perovskite hole transport layer (HTL) interface. This surface treatment has led to the development of hysteresis‐free devices with an impressive ≈13% increase in power conversion efficiency. Computational studies have explored the halide perovskite architecture of ODPA‐treated HTL/Perovskite, aiming to unlock superior photovoltaic performance. The ODPA surface functionalization has demonstrated enhanced device performance, characterized by superior charge exchange capacity. Moreover, higher band‐to‐band recombination in photoluminescence and electroluminescence indicates presence of lower mid‐gap energy states, thereby increasing the effective photogenerated carrier density. These findings are expected to promote the utilization of various phosphonic acid‐based self‐assembly monolayers for surface passivation of oxide‐based transport layers in perovskite solar cells. Ultimately, this research contributes to the realization of efficient halide PSCs by harnessing the favorable architecture of NiO x interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吨吨发布了新的文献求助10
1秒前
墨然然完成签到 ,获得积分10
2秒前
2秒前
dddyl应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得30
2秒前
风清扬应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
断秋1完成签到 ,获得积分10
4秒前
打工牛牛应助阴影采纳,获得10
4秒前
杳鸢应助felix采纳,获得30
5秒前
开心寄松完成签到,获得积分10
7秒前
充电宝应助罗大壮采纳,获得10
9秒前
10秒前
田茂青发布了新的文献求助10
11秒前
赘婿应助爽歪歪采纳,获得10
11秒前
wfy关闭了wfy文献求助
12秒前
13秒前
13秒前
Orange应助李华采纳,获得10
14秒前
14秒前
15秒前
花花完成签到,获得积分10
15秒前
luxiaoyu完成签到,获得积分10
16秒前
16秒前
花花发布了新的文献求助30
18秒前
Bettye发布了新的文献求助10
19秒前
20秒前
LL爱读书发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
22秒前
阳光c完成签到 ,获得积分10
22秒前
22秒前
蓝妙弋完成签到 ,获得积分10
23秒前
shaohua2011完成签到,获得积分10
24秒前
nhh发布了新的文献求助10
24秒前
李爱国应助2025超分子化学采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496397
关于积分的说明 11081817
捐赠科研通 3226886
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800997