Data-driven product design and assortment optimization

计算机科学 产品(数学) 产品设计 数学 几何学
作者
Yugang Yu,Bo Wang,Shengming Zheng
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:182: 103413-103413 被引量:3
标识
DOI:10.1016/j.tre.2024.103413
摘要

Our study focuses on how real-world data can inform and enhance firms' decisions around product design and assortment, which is critical in logistics, automotive, fast fashion and other industries. This article presents a data-driven analytics study on the challenges of new product design and product assortment. We first implement predictive analytics, utilizing a Multinomial Logit (MNL) model to estimate consumer preferences for both existing and newly designed products. Subsequently, we proceed with assortment optimization, including a deterministic model and a robust model. By applying our data-driven method in the case study based on the historical data of a fast fashion e-retailer, we find that the robust assortment model balances revenue and stability, while performing significantly better in the worst-case than the deterministic assortment model. This demonstrates that the robust assortment model, which accounts for parameter uncertainty, may be more suitable for real-world applications. Furthermore, the numerical results indicate that our data-driven new product design and robust assortment approaches can help the firm achieve a 31% expected revenue improvement. Interestingly, our robust assortment methods based on the MNL model outperform machine learning based assortment methods, despite the latter's more accurate predictive abilities regarding consumer purchasing patterns. These results indicate that accurate predictions of consumer purchasing patterns alone are not sufficient to guarantee good assortment decisions. Firms are advised to adopt the simpler and more comprehensible MNL model as their predictive tool when making assortment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Haley完成签到 ,获得积分0
1秒前
CodeCraft应助闫富扬采纳,获得10
2秒前
3秒前
田様应助JoshuaChen采纳,获得10
3秒前
假发君完成签到,获得积分10
3秒前
Akim应助地大空天采纳,获得10
4秒前
4秒前
jianjian完成签到,获得积分10
4秒前
华仔应助无糖零脂采纳,获得10
5秒前
灵巧的荔枝完成签到,获得积分10
5秒前
woiwxx完成签到,获得积分20
5秒前
无敌周周姐完成签到,获得积分10
5秒前
111222333完成签到 ,获得积分10
6秒前
脑洞疼应助粗心的雅绿采纳,获得10
6秒前
6秒前
6秒前
6秒前
8秒前
8秒前
火星上的糖豆完成签到,获得积分10
8秒前
桐桐应助Mikecheng采纳,获得10
9秒前
无奈行恶应助笨笨的之柔采纳,获得10
9秒前
huyuan发布了新的文献求助10
9秒前
Sandro完成签到,获得积分10
9秒前
9秒前
11秒前
11秒前
victory_liu发布了新的文献求助10
11秒前
11秒前
噗噗发布了新的文献求助10
11秒前
汉小弟完成签到,获得积分10
12秒前
小高同学发布了新的文献求助10
12秒前
12秒前
鑫鑫发布了新的文献求助10
13秒前
Bio应助明亮无颜采纳,获得50
13秒前
Tiffany发布了新的文献求助10
13秒前
烟花应助杰杰采纳,获得10
14秒前
wwwwwwwwww发布了新的文献求助10
14秒前
小蘑菇应助桢桢树采纳,获得10
14秒前
yf发布了新的文献求助30
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582