Data-driven product design and assortment optimization

计算机科学 产品(数学) 产品设计 数学 几何学
作者
Yugang Yu,Bo Wang,Shengming Zheng
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:182: 103413-103413 被引量:1
标识
DOI:10.1016/j.tre.2024.103413
摘要

Our study focuses on how real-world data can inform and enhance firms' decisions around product design and assortment, which is critical in logistics, automotive, fast fashion and other industries. This article presents a data-driven analytics study on the challenges of new product design and product assortment. We first implement predictive analytics, utilizing a Multinomial Logit (MNL) model to estimate consumer preferences for both existing and newly designed products. Subsequently, we proceed with assortment optimization, including a deterministic model and a robust model. By applying our data-driven method in the case study based on the historical data of a fast fashion e-retailer, we find that the robust assortment model balances revenue and stability, while performing significantly better in the worst-case than the deterministic assortment model. This demonstrates that the robust assortment model, which accounts for parameter uncertainty, may be more suitable for real-world applications. Furthermore, the numerical results indicate that our data-driven new product design and robust assortment approaches can help the firm achieve a 31% expected revenue improvement. Interestingly, our robust assortment methods based on the MNL model outperform machine learning based assortment methods, despite the latter's more accurate predictive abilities regarding consumer purchasing patterns. These results indicate that accurate predictions of consumer purchasing patterns alone are not sufficient to guarantee good assortment decisions. Firms are advised to adopt the simpler and more comprehensible MNL model as their predictive tool when making assortment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怀忑发布了新的文献求助10
1秒前
ni应助南宫誉采纳,获得10
1秒前
研友_8Y2M0L完成签到,获得积分10
1秒前
2秒前
orixero应助普鲁斯特采纳,获得10
4秒前
胡说八道完成签到 ,获得积分10
6秒前
7秒前
8秒前
怀忑完成签到,获得积分10
8秒前
8秒前
被淹死的鱼4U完成签到,获得积分10
9秒前
10秒前
喵拟吗喵完成签到,获得积分10
10秒前
10秒前
哭泣剑封完成签到,获得积分10
10秒前
搜集达人应助朱滴滴采纳,获得10
10秒前
香蕉觅云应助哭泣丹翠采纳,获得10
12秒前
13秒前
研友_5Y9A75发布了新的文献求助10
13秒前
完美世界应助PPPPP星星采纳,获得10
14秒前
wangdada发布了新的文献求助10
14秒前
15秒前
今后应助无情的盼兰采纳,获得10
15秒前
852应助傲娇的刺猬采纳,获得10
17秒前
小刚完成签到,获得积分10
18秒前
zhangxin完成签到,获得积分10
19秒前
普鲁斯特发布了新的文献求助10
20秒前
陈龙平完成签到 ,获得积分10
20秒前
21秒前
22秒前
24秒前
24秒前
Ava应助茜zi采纳,获得10
26秒前
ren发布了新的文献求助10
28秒前
Yutong完成签到,获得积分10
28秒前
彭于晏应助xx采纳,获得10
28秒前
30秒前
酷波er应助煤灰采纳,获得10
30秒前
传奇3应助123采纳,获得10
31秒前
32秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3112787
求助须知:如何正确求助?哪些是违规求助? 2763025
关于积分的说明 7673259
捐赠科研通 2418326
什么是DOI,文献DOI怎么找? 1283724
科研通“疑难数据库(出版商)”最低求助积分说明 619449
版权声明 599586