工作流程
软件部署
计算机科学
联轴节(管道)
配体(生物化学)
吞吐量
过程(计算)
生化工程
数据科学
化学
纳米技术
组合化学
软件工程
数据库
材料科学
工程类
程序设计语言
电信
生物化学
受体
冶金
无线
作者
Mohammad H. Samha,Lucas J. Karas,David B. Vogt,Emmanuel C. Odogwu,Jennifer M. Elward,Jennifer M. Crawford,Janelle E. Steves,Matthew S. Sigman
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2024-01-17
卷期号:10 (3)
被引量:11
标识
DOI:10.1126/sciadv.adn3478
摘要
Data science is assuming a pivotal role in guiding reaction optimization and streamlining experimental workloads in the evolving landscape of synthetic chemistry. A discipline-wide goal is the development of workflows that integrate computational chemistry and data science tools with high-throughput experimentation as it provides experimentalists the ability to maximize success in expensive synthetic campaigns. Here, we report an end-to-end data-driven process to effectively predict how structural features of coupling partners and ligands affect Cu-catalyzed C–N coupling reactions. The established workflow underscores the limitations posed by substrates and ligands while also providing a systematic ligand prediction tool that uses probability to assess when a ligand will be successful. This platform is strategically designed to confront the intrinsic unpredictability frequently encountered in synthetic reaction deployment.
科研通智能强力驱动
Strongly Powered by AbleSci AI