已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An efficient evolutionary architecture search for variational autoencoder with alternating optimization and adaptive crossover

计算机科学 渡线 自编码 进化算法 建筑 数学优化 人工智能 人工神经网络 数学 艺术 视觉艺术
作者
Ronghua Shang,Hangcheng Liu,Wenzheng Li,Weitong Zhang,Teng Ma,Licheng Jiao
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:86: 101520-101520
标识
DOI:10.1016/j.swevo.2024.101520
摘要

Variational autoencoder is a commonly unsupervised learning model. However, its complex structure hinders the utilization of the network architecture search algorithm to release researchers from tedious manual design. To design excellent architectures automatically, this paper proposes an efficient evolutionary architecture search for variational autoencoder with alternating optimization and adaptive crossover(AOC-VAE). Firstly, to alleviate the problem of large search space when automatically designing variational autoencoders, AOC-VAE designs an alternating optimized search mechanism based on the specific coupling of encoder and decoder in variational autoencoders, which reduces the original huge search space almost to half. Then, AOC-VAE can find quickly the optimal individual in the solution space by designing an adaptive crossover mechanism. In early evolutionary period, the structural differences between individuals are relatively significant, making crossover operations more inclined to exchange structural information between individuals. As evolution progresses, the individual structures in the population tend to be similar, and the exchange of information concentrates on the parameter. Finally, in the optimization process, a fitness evaluation mechanism based on dynamic weights is designed to accurately find out the outstanding individuals under the current optimization goal. Individual fitness in the population is more inclined to be affected by the current optimization goal, thus guiding the population to evolve according to the optimization goal at different stages. AOC-VAE is verified on MNIST, SVHN, CIFAR-10, and CIFAR-100 benchmark datasets and compared with 14 algorithms. The experimental results show that the VAE network structure designed by the AOC-VAE performs well in the image classification task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助ffff采纳,获得10
3秒前
tt完成签到 ,获得积分10
4秒前
5秒前
健忘的金完成签到 ,获得积分10
9秒前
周墨完成签到 ,获得积分10
10秒前
11秒前
英俊的铭应助读书的时候采纳,获得30
11秒前
12秒前
顾矜应助由清涟采纳,获得30
12秒前
科研通AI6.1应助wang采纳,获得10
14秒前
芽芽豆完成签到 ,获得积分10
14秒前
Freedom完成签到 ,获得积分10
14秒前
yihuifa完成签到 ,获得积分10
15秒前
15秒前
15秒前
15秒前
苏11发布了新的文献求助10
16秒前
16秒前
zhangwj226完成签到,获得积分10
17秒前
遇上就这样吧完成签到,获得积分0
17秒前
奎奎完成签到 ,获得积分10
17秒前
21秒前
23秒前
小莹子发布了新的文献求助30
25秒前
26秒前
28秒前
31秒前
无私航空发布了新的文献求助10
31秒前
35秒前
普萘洛尔完成签到,获得积分10
36秒前
39秒前
韩祖完成签到 ,获得积分10
39秒前
大模型应助勘察加锅炉房采纳,获得10
40秒前
obsession完成签到 ,获得积分10
41秒前
简单完成签到,获得积分20
41秒前
YJL完成签到 ,获得积分10
44秒前
美满的乐瑶完成签到 ,获得积分10
45秒前
镜哥发布了新的文献求助30
45秒前
科研通AI2S应助水水采纳,获得10
46秒前
科目三应助小莹子采纳,获得30
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738936
求助须知:如何正确求助?哪些是违规求助? 5381771
关于积分的说明 15338906
捐赠科研通 4881720
什么是DOI,文献DOI怎么找? 2623864
邀请新用户注册赠送积分活动 1572542
关于科研通互助平台的介绍 1529309