An efficient evolutionary architecture search for variational autoencoder with alternating optimization and adaptive crossover

计算机科学 渡线 自编码 进化算法 建筑 数学优化 人工智能 人工神经网络 数学 艺术 视觉艺术
作者
Ronghua Shang,Hangcheng Liu,Wenzheng Li,Weitong Zhang,Teng Ma,Licheng Jiao
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:86: 101520-101520
标识
DOI:10.1016/j.swevo.2024.101520
摘要

Variational autoencoder is a commonly unsupervised learning model. However, its complex structure hinders the utilization of the network architecture search algorithm to release researchers from tedious manual design. To design excellent architectures automatically, this paper proposes an efficient evolutionary architecture search for variational autoencoder with alternating optimization and adaptive crossover(AOC-VAE). Firstly, to alleviate the problem of large search space when automatically designing variational autoencoders, AOC-VAE designs an alternating optimized search mechanism based on the specific coupling of encoder and decoder in variational autoencoders, which reduces the original huge search space almost to half. Then, AOC-VAE can find quickly the optimal individual in the solution space by designing an adaptive crossover mechanism. In early evolutionary period, the structural differences between individuals are relatively significant, making crossover operations more inclined to exchange structural information between individuals. As evolution progresses, the individual structures in the population tend to be similar, and the exchange of information concentrates on the parameter. Finally, in the optimization process, a fitness evaluation mechanism based on dynamic weights is designed to accurately find out the outstanding individuals under the current optimization goal. Individual fitness in the population is more inclined to be affected by the current optimization goal, thus guiding the population to evolve according to the optimization goal at different stages. AOC-VAE is verified on MNIST, SVHN, CIFAR-10, and CIFAR-100 benchmark datasets and compared with 14 algorithms. The experimental results show that the VAE network structure designed by the AOC-VAE performs well in the image classification task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Paul111完成签到,获得积分10
1秒前
jzt12138发布了新的文献求助10
2秒前
2秒前
青青闭上眼睛完成签到,获得积分10
4秒前
4秒前
英姑应助fufu采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
大豆子完成签到,获得积分10
8秒前
浮游应助青青闭上眼睛采纳,获得10
8秒前
8秒前
王贤平发布了新的文献求助10
8秒前
9秒前
11秒前
万能图书馆应助清脆安南采纳,获得10
11秒前
天真苑睐完成签到,获得积分10
12秒前
Leo完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
Azure完成签到,获得积分10
13秒前
Akim应助美好斓采纳,获得10
16秒前
遇见发布了新的文献求助10
16秒前
小豆子完成签到,获得积分10
18秒前
Jane完成签到 ,获得积分10
20秒前
21秒前
21秒前
23秒前
TL111发布了新的文献求助10
23秒前
23秒前
wsd关闭了wsd文献求助
24秒前
boaster完成签到,获得积分10
24秒前
25秒前
gsq完成签到,获得积分10
27秒前
热情的未来完成签到,获得积分10
28秒前
红豆子完成签到,获得积分10
28秒前
0000完成签到,获得积分10
28秒前
清脆安南发布了新的文献求助10
29秒前
30秒前
CodeCraft应助冷静伟诚采纳,获得10
30秒前
研友_VZG7GZ应助retortt采纳,获得10
31秒前
朱珏虹发布了新的文献求助10
32秒前
YE完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109