An efficient evolutionary architecture search for variational autoencoder with alternating optimization and adaptive crossover

计算机科学 渡线 自编码 进化算法 建筑 数学优化 人工智能 人工神经网络 数学 艺术 视觉艺术
作者
Ronghua Shang,Hangcheng Liu,Wenzheng Li,Weitong Zhang,Teng Ma,Licheng Jiao
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:86: 101520-101520
标识
DOI:10.1016/j.swevo.2024.101520
摘要

Variational autoencoder is a commonly unsupervised learning model. However, its complex structure hinders the utilization of the network architecture search algorithm to release researchers from tedious manual design. To design excellent architectures automatically, this paper proposes an efficient evolutionary architecture search for variational autoencoder with alternating optimization and adaptive crossover(AOC-VAE). Firstly, to alleviate the problem of large search space when automatically designing variational autoencoders, AOC-VAE designs an alternating optimized search mechanism based on the specific coupling of encoder and decoder in variational autoencoders, which reduces the original huge search space almost to half. Then, AOC-VAE can find quickly the optimal individual in the solution space by designing an adaptive crossover mechanism. In early evolutionary period, the structural differences between individuals are relatively significant, making crossover operations more inclined to exchange structural information between individuals. As evolution progresses, the individual structures in the population tend to be similar, and the exchange of information concentrates on the parameter. Finally, in the optimization process, a fitness evaluation mechanism based on dynamic weights is designed to accurately find out the outstanding individuals under the current optimization goal. Individual fitness in the population is more inclined to be affected by the current optimization goal, thus guiding the population to evolve according to the optimization goal at different stages. AOC-VAE is verified on MNIST, SVHN, CIFAR-10, and CIFAR-100 benchmark datasets and compared with 14 algorithms. The experimental results show that the VAE network structure designed by the AOC-VAE performs well in the image classification task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZG完成签到,获得积分10
3秒前
3秒前
牧长一完成签到 ,获得积分0
3秒前
汉堡包应助靓丽的采白采纳,获得30
3秒前
3秒前
4秒前
哦耶发布了新的文献求助10
6秒前
单薄的沛槐完成签到,获得积分10
6秒前
6秒前
LANER完成签到 ,获得积分10
7秒前
夏xia完成签到,获得积分10
7秒前
科研笨猪完成签到,获得积分20
7秒前
10秒前
多情新蕾发布了新的文献求助10
10秒前
10秒前
10秒前
Leon_Kim发布了新的文献求助10
11秒前
英姑应助Fyt00采纳,获得10
12秒前
学白柒完成签到,获得积分10
13秒前
阿尔法贝塔完成签到 ,获得积分10
13秒前
14秒前
15秒前
ERICLEE82发布了新的文献求助10
15秒前
16秒前
sun发布了新的文献求助10
16秒前
科研通AI6.1应助一灯大师采纳,获得30
18秒前
19秒前
哦耶完成签到,获得积分10
19秒前
李新颖完成签到 ,获得积分10
20秒前
踏实天亦发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
annoraz完成签到,获得积分10
24秒前
Tessa完成签到,获得积分10
25秒前
思源应助caitSith采纳,获得10
25秒前
26秒前
28秒前
29秒前
闪耀吨吨完成签到,获得积分10
30秒前
ikea1984发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742180
求助须知:如何正确求助?哪些是违规求助? 5406715
关于积分的说明 15344214
捐赠科研通 4883585
什么是DOI,文献DOI怎么找? 2625155
邀请新用户注册赠送积分活动 1574005
关于科研通互助平台的介绍 1530964