An efficient evolutionary architecture search for variational autoencoder with alternating optimization and adaptive crossover

计算机科学 渡线 自编码 进化算法 建筑 数学优化 人工智能 人工神经网络 数学 艺术 视觉艺术
作者
Ronghua Shang,Hangcheng Liu,Wenzheng Li,Weitong Zhang,Teng Ma,Licheng Jiao
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:86: 101520-101520
标识
DOI:10.1016/j.swevo.2024.101520
摘要

Variational autoencoder is a commonly unsupervised learning model. However, its complex structure hinders the utilization of the network architecture search algorithm to release researchers from tedious manual design. To design excellent architectures automatically, this paper proposes an efficient evolutionary architecture search for variational autoencoder with alternating optimization and adaptive crossover(AOC-VAE). Firstly, to alleviate the problem of large search space when automatically designing variational autoencoders, AOC-VAE designs an alternating optimized search mechanism based on the specific coupling of encoder and decoder in variational autoencoders, which reduces the original huge search space almost to half. Then, AOC-VAE can find quickly the optimal individual in the solution space by designing an adaptive crossover mechanism. In early evolutionary period, the structural differences between individuals are relatively significant, making crossover operations more inclined to exchange structural information between individuals. As evolution progresses, the individual structures in the population tend to be similar, and the exchange of information concentrates on the parameter. Finally, in the optimization process, a fitness evaluation mechanism based on dynamic weights is designed to accurately find out the outstanding individuals under the current optimization goal. Individual fitness in the population is more inclined to be affected by the current optimization goal, thus guiding the population to evolve according to the optimization goal at different stages. AOC-VAE is verified on MNIST, SVHN, CIFAR-10, and CIFAR-100 benchmark datasets and compared with 14 algorithms. The experimental results show that the VAE network structure designed by the AOC-VAE performs well in the image classification task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丸子完成签到 ,获得积分10
刚刚
刚刚
月光完成签到 ,获得积分10
刚刚
彳亍完成签到,获得积分10
1秒前
kandie完成签到,获得积分10
1秒前
嘟嘟完成签到,获得积分10
1秒前
烟花应助菲菲呀采纳,获得10
1秒前
Allowsany完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
安详剑身发布了新的文献求助10
3秒前
科研通AI6应助SHUANG采纳,获得10
3秒前
彳亍发布了新的文献求助10
4秒前
4秒前
Joker完成签到,获得积分10
5秒前
5秒前
隐形曼青应助谢尔顿采纳,获得50
6秒前
无花果应助小哈采纳,获得10
6秒前
6秒前
三水发布了新的文献求助50
6秒前
hhchhcmxhf发布了新的文献求助10
6秒前
7秒前
打打应助文献下载神器采纳,获得10
7秒前
英姑应助wb采纳,获得10
8秒前
8秒前
缥缈怀绿完成签到 ,获得积分10
8秒前
果汁完成签到,获得积分10
9秒前
月光发布了新的文献求助10
9秒前
爬不起来发布了新的文献求助10
9秒前
9秒前
9秒前
美女发布了新的文献求助10
10秒前
10秒前
11秒前
三水完成签到,获得积分10
11秒前
11秒前
小鱼干发布了新的文献求助10
12秒前
太微北发布了新的文献求助10
12秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871