An efficient evolutionary architecture search for variational autoencoder with alternating optimization and adaptive crossover

计算机科学 渡线 自编码 进化算法 建筑 数学优化 人工智能 人工神经网络 数学 艺术 视觉艺术
作者
Ronghua Shang,Hangcheng Liu,Wenzheng Li,Weitong Zhang,Teng Ma,Licheng Jiao
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:86: 101520-101520
标识
DOI:10.1016/j.swevo.2024.101520
摘要

Variational autoencoder is a commonly unsupervised learning model. However, its complex structure hinders the utilization of the network architecture search algorithm to release researchers from tedious manual design. To design excellent architectures automatically, this paper proposes an efficient evolutionary architecture search for variational autoencoder with alternating optimization and adaptive crossover(AOC-VAE). Firstly, to alleviate the problem of large search space when automatically designing variational autoencoders, AOC-VAE designs an alternating optimized search mechanism based on the specific coupling of encoder and decoder in variational autoencoders, which reduces the original huge search space almost to half. Then, AOC-VAE can find quickly the optimal individual in the solution space by designing an adaptive crossover mechanism. In early evolutionary period, the structural differences between individuals are relatively significant, making crossover operations more inclined to exchange structural information between individuals. As evolution progresses, the individual structures in the population tend to be similar, and the exchange of information concentrates on the parameter. Finally, in the optimization process, a fitness evaluation mechanism based on dynamic weights is designed to accurately find out the outstanding individuals under the current optimization goal. Individual fitness in the population is more inclined to be affected by the current optimization goal, thus guiding the population to evolve according to the optimization goal at different stages. AOC-VAE is verified on MNIST, SVHN, CIFAR-10, and CIFAR-100 benchmark datasets and compared with 14 algorithms. The experimental results show that the VAE network structure designed by the AOC-VAE performs well in the image classification task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助卷毛采纳,获得10
刚刚
小贝发布了新的文献求助10
1秒前
Andy完成签到,获得积分10
2秒前
3秒前
Fish发布了新的文献求助10
3秒前
Stealer发布了新的文献求助10
4秒前
azami发布了新的文献求助10
5秒前
5秒前
光之战士完成签到 ,获得积分10
6秒前
6秒前
7秒前
Shawn发布了新的文献求助10
7秒前
脑洞疼应助doctorw采纳,获得10
7秒前
bbb完成签到,获得积分10
7秒前
乐乐应助仵一采纳,获得10
9秒前
9秒前
10秒前
苗苗完成签到,获得积分10
10秒前
Ayna发布了新的文献求助10
10秒前
晚香玉发布了新的文献求助10
10秒前
10秒前
红叶完成签到,获得积分10
11秒前
3D发布了新的文献求助10
13秒前
ss_hHe发布了新的文献求助10
13秒前
苗苗发布了新的文献求助10
13秒前
14秒前
14秒前
赘婿应助azami采纳,获得10
14秒前
三席发布了新的文献求助50
14秒前
xhq发布了新的文献求助10
15秒前
所所应助明天会早睡的采纳,获得10
15秒前
15秒前
希希发布了新的文献求助10
16秒前
Moro发布了新的文献求助10
18秒前
18秒前
爱听歌的白开水完成签到 ,获得积分20
19秒前
狂野的友灵完成签到 ,获得积分10
19秒前
19秒前
小小康康完成签到,获得积分10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693788
求助须知:如何正确求助?哪些是违规求助? 5094331
关于积分的说明 15212383
捐赠科研通 4850595
什么是DOI,文献DOI怎么找? 2601854
邀请新用户注册赠送积分活动 1553652
关于科研通互助平台的介绍 1511661