An efficient evolutionary architecture search for variational autoencoder with alternating optimization and adaptive crossover

计算机科学 渡线 自编码 进化算法 建筑 数学优化 人工智能 人工神经网络 数学 艺术 视觉艺术
作者
Ronghua Shang,Hangcheng Liu,Wenzheng Li,Weitong Zhang,Teng Ma,Licheng Jiao
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:86: 101520-101520
标识
DOI:10.1016/j.swevo.2024.101520
摘要

Variational autoencoder is a commonly unsupervised learning model. However, its complex structure hinders the utilization of the network architecture search algorithm to release researchers from tedious manual design. To design excellent architectures automatically, this paper proposes an efficient evolutionary architecture search for variational autoencoder with alternating optimization and adaptive crossover(AOC-VAE). Firstly, to alleviate the problem of large search space when automatically designing variational autoencoders, AOC-VAE designs an alternating optimized search mechanism based on the specific coupling of encoder and decoder in variational autoencoders, which reduces the original huge search space almost to half. Then, AOC-VAE can find quickly the optimal individual in the solution space by designing an adaptive crossover mechanism. In early evolutionary period, the structural differences between individuals are relatively significant, making crossover operations more inclined to exchange structural information between individuals. As evolution progresses, the individual structures in the population tend to be similar, and the exchange of information concentrates on the parameter. Finally, in the optimization process, a fitness evaluation mechanism based on dynamic weights is designed to accurately find out the outstanding individuals under the current optimization goal. Individual fitness in the population is more inclined to be affected by the current optimization goal, thus guiding the population to evolve according to the optimization goal at different stages. AOC-VAE is verified on MNIST, SVHN, CIFAR-10, and CIFAR-100 benchmark datasets and compared with 14 algorithms. The experimental results show that the VAE network structure designed by the AOC-VAE performs well in the image classification task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raisin完成签到 ,获得积分10
2秒前
英勇绮南发布了新的文献求助10
2秒前
2秒前
2秒前
方方完成签到,获得积分10
3秒前
4秒前
xfyxxh完成签到,获得积分10
4秒前
萌新发布了新的文献求助10
4秒前
6秒前
lynn完成签到,获得积分10
6秒前
7秒前
Lucas应助vaco采纳,获得10
7秒前
tjb关闭了tjb文献求助
7秒前
9秒前
ruanyh发布了新的文献求助10
11秒前
kitty完成签到,获得积分20
11秒前
张占完成签到,获得积分10
11秒前
13秒前
13秒前
CipherSage应助我爱科研采纳,获得10
13秒前
liu1223456发布了新的文献求助10
14秒前
ju完成签到,获得积分10
14秒前
14秒前
共享精神应助阳光的梦寒采纳,获得10
14秒前
渔婆完成签到,获得积分10
15秒前
蓝精灵关注了科研通微信公众号
16秒前
负责纲完成签到 ,获得积分10
16秒前
糖糖爱干饭完成签到 ,获得积分10
16秒前
月亮完成签到,获得积分10
16秒前
Lucas应助mylaodao采纳,获得20
17秒前
熙冉完成签到,获得积分10
17秒前
nsk810431231发布了新的文献求助10
17秒前
桐桐应助fool采纳,获得10
17秒前
钟是一梦发布了新的文献求助10
17秒前
萌新完成签到,获得积分10
18秒前
mmm0709完成签到,获得积分10
18秒前
周星星完成签到,获得积分10
18秒前
好大的雨完成签到,获得积分10
18秒前
冷冷发布了新的文献求助10
19秒前
CL发布了新的文献求助20
20秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081823
求助须知:如何正确求助?哪些是违规求助? 2734862
关于积分的说明 7534680
捐赠科研通 2384387
什么是DOI,文献DOI怎么找? 1264312
科研通“疑难数据库(出版商)”最低求助积分说明 612614
版权声明 597600